31 research outputs found

    The prospect of tumor microenvironment-modulating therapeutical strategies

    Get PDF
    Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence

    C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria

    Get PDF
    Background: Emapticap pegol (NOX-E36) is a Spiegelmer(R) that specifically binds and inhibits the pro-inflammatory chemokine C-C motif-ligand 2 (CCL2) (also called monocyte-chemotactic protein 1). The objective of this exploratory study was to evaluate the safety and tolerability as well as the renoprotective and anti-diabetic potential of emapticap in type 2 diabetic patients with albuminuria. Methods: A randomized, double-blind, placebo-controlled Phase IIa study was initiated in 75 albuminuric type 2 diabetics. Emapticap at 0.5 mg/kg and placebo were administered subcutaneously twice weekly for 12 weeks to 50 and 25 patients, respectively, followed by a treatment-free phase of 12 weeks. Results: Twice weekly subcutaneous treatment with emapticap over 3 months was generally safe and well tolerated and reduced the urinary albumin/creatinine ratio (ACR) from baseline to Week 12 by 29% (P < 0.05); versus placebo a non-significant ACR reduction of 15% was observed (P = 0.221). The maximum difference, 26% (P = 0.064) between emapticap and placebo, was seen 8 weeks after discontinuation of treatment. At Week 12, the HbA1c changed by -0.31% in the emapticap versus +0.05% in the placebo group (P = 0.146). The maximum difference for HbA1c was observed 4 weeks after the last dose with -0.35% for emapticap versus +0.12% for placebo (P = 0.026). No relevant change in blood pressure or estimated glomerular filtration rate was seen between the treatment groups throughout the study. A post hoc analysis with exclusion of patients with major protocol violations, dual RAS blockade or haematuria increased the ACR difference between the two treatment arms to 32% at Week 12 (P = 0.014) and 39% at Week 20 (P = 0.010). Conclusions: Inhibition of the CCL2/CCL2 receptor axis with emapticap pegol was generally safe and well tolerated. Beneficial effects on ACR and HbA1c were observed in this exploratory study, which were maintained after cessation of treatment. Taken together, emapticap may have disease-modifying effects that warrant further investigation in adequately powered confirmatory studies

    Table_1_The prospect of tumor microenvironment-modulating therapeutical strategies.docx

    No full text
    Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.</p
    corecore