2,479 research outputs found
Exegesis of Sect. III.B from âFundamentals of the Mechanics of Continuaâ by E. Hellinger
This is our third and last exegetic essay on the fundamental review article DIE ALLGEMEINEN ANSĂTZE DER MECHANIK DER KONTINUA in the EncyklopĂ€die der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Bd. IV-4, Hft. 5 (1913) by Ernst Hellinger which contains the translation and the commentary of the remaining text starting from p. 663. The six subsections, No. 9â15, deal with the applications of the previously developed conceptual tools to formulate: an effective theory of elasticity, the dynamics of ideal fluids, models for internal friction and elastic hysteresis, a theory of capillarity, optics, the fundamental equations of electrodynamics, an introduction of the thermodynamical foundations and the relationship between the theory of continua and the theory of relativity. Hellinger refers to relevant literature while consolidating in an effective way the contemporary knowledge in 1913. Considering notational differences as being irrelevant for the characterization of the presented scientific content, Hellinger's article shows that an effective compendium of a large part of the insights given in Truesdell and Toupin and Truesdell and Noll has already been available in 1913. We include in this paper an assessment of the different roles played by pioneers, who are innovating their scientific discipline, and by erudite scholars whose role consists in re-ordering existent knowledge and advertising to a wider audience the most important technical results already obtained in a given discipline
Recommended from our members
The ingredients of the âSubsolarâ noble gas component
On the basis of several experiments on separates of the EH5 chondrite St. Markâs, we will argue that the 'subsolar' noble gas component is a mixture of solar-like, Q- and terrestrial noble gases
A family of total Lagrangian Petrov-Galerkin Cosserat rod finite element formulations
The standard in rod finite element formulations is the Bubnov-Galerkin
projection method, where the test functions arise from a consistent variation
of the ansatz functions. This approach becomes increasingly complex when highly
nonlinear ansatz functions are chosen to approximate the rod's centerline and
cross-section orientations. Using a Petrov-Galerkin projection method, we
propose a whole family of rod finite element formulations where the nodal
generalized virtual displacements and generalized velocities are interpolated
instead of using the consistent variations and time derivatives of the ansatz
functions. This approach leads to a significant simplification of the
expressions in the discrete virtual work functionals. In addition, independent
strategies can be chosen for interpolating the nodal centerline points and
cross-section orientations. We discuss three objective interpolation strategies
and give an in-depth analysis concerning locking and convergence behavior for
the whole family of rod finite element formulations.Comment: arXiv admin note: text overlap with arXiv:2301.0559
A total Lagrangian, objective and intrinsically locking-free Petrov-Galerkin SE(3) Cosserat rod finite element formulation
Based on more than three decades of rod finite element theory, this
publication unifies all the successful contributions found in literature and
eradicates the arising drawbacks like loss of objectivity, locking,
path-dependence and redundant coordinates. Specifically, the idea of
interpolating the nodal orientations using relative rotation vectors, proposed
by Crisfield and Jeleni\'c in 1999, is extended to the interpolation of nodal
Euclidean transformation matrices with the aid of relative twists; a strategy
that arises from the SE(3)-structure of the Cosserat rod kinematics. Applying a
Petrov-Galerkin projection method, we propose a novel rod finite element
formulation where the virtual displacements and rotations as well as the
translational and angular velocities are interpolated instead of using the
consistent variations and time-derivatives of the introduced interpolation
formula. Properties such as the intrinsic absence of locking, preservation of
objectivity after discretization and parametrization in terms of a minimal
number of nodal unknowns are demonstrated by conclusive numerical examples in
both statics and dynamics
Continuum theory for mechanical metamaterials with a cubic lattice substructure
International audienceA three-dimensional continuum theory for fibrous mechanical metamaterials is proposed, in which the fibers are assumed to be spatial Kirchhoff rods whose mechanical response is controlled by a deformation field and a rotation field, the former accounting for strain of the rod and the latter for flexure and twist of the rod as it deforms. This leads naturally to a model based on Cosserat elasticity. Rigidity constraints are introduced that effectively reduce the model to a variant of second-gradient elasticity theory
Relative importance of fluvial and glacial erosion in shaping the Chandra Valley, western Himalaya, India
Abstract HKT-ISTP 2013
B
Interannual, summer, and diel variability of CH4 and CO2 effluxes from Toolik Lake, Alaska, during the ice-free periods 2010-2015
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eugster, W., DelSontro, T., Shaver, G. R., & Kling, G. W. Interannual, summer, and diel variability of CH4 and CO2 effluxes from Toolik Lake, Alaska, during the ice-free periods 2010-2015. Environmental Science: Processes & Impacts, 22(11), (2020): 2181-2198, doi: 10.1039/D0EM00125B.Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO2) and methane (CH4) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH4) and carbon dioxide (CO2) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010â2015). CO2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol mâ2 dâ1) were in good agreement with earlier estimates from 1975â1989 using different methods. CH4 effluxes in 2010â2015 (averaging 0.13 ± 0.06 mmol mâ2 dâ1) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011â2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO2 effluxes, contributing 86â93% of the ice-free period GWP of 26â90 g CO2,eq mâ2. Diel variation in fluxes was also important, with up to a 2-fold (CH4) to 4-fold (CO2) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1â2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic.We acknowledge support received from the Arctic LTER grants NSF-DEB-1637459, 1026843, 1754835, NSF-PLR 1504006, and supplemental funding from the NSF-NEON and OPP-AON programs. W. E. acknowledges additional funding received from ETH Zurich scientific equipment grants 0-43350-07 and 0-43683-11. James Laundre is thanked for technical support, Jason Dobkowski for supervising deployment and removal of the float to and from the lake, and Randy Fulweber for his GIS support. Many thanks also go to Toolik Field Station staff members for support
Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids
Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wall teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail
McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia
Fibrous dysplasia (FD) is sometimes accompanied by extraskeletal manifestations that can include any combination of café-au-lait macules, hyperfunctioning endocrinopathies, such as gonadotropin-independent precocious puberty, hyperthyroidism, growth hormone excess, FGF23-mediated renal phosphate wasting, and/or Cushing syndrome, as well as other less common features. The combination of any of these findings, with or without FD, is known as McCune-Albright syndrome (MAS). The broad spectrum of involved tissues and the unpredictable combination of findings owe to the fact that molecular defect is due to dominant activating mutations in the widely expressed signaling protein, Gsα, and the fact these mutations arises sporadically, often times early in development, prior to gastrulation, and can distribute across many or few tissues
Distributed programming with typed events
The remote-procedure-call abstraction, including its derivates (underlying, for example, Java RMI, CORBA, and .NET), currently represents one of the most popular paradigms for devising distributed applications. Objects (when acting as servers) are invoked remotely (by clients) through proxies (also called stubs). Because proxies offer the same interfaces as their respective associated remote objects, they hide distribution details, leading to a convenient distributed-programming style that enforces type safety and encapsulation. However, RPC-style interaction does not apply equally well in all contexts. In its classic form, it tends to strongly synchronize-and hence couple-the invoking and invoked objects. Several proposed asynchronous variants of RPC illustrate the severity of this drawback. Type-based publish-subscribe is an appealing candidate programming abstraction for inherently decoupled and completely decentralized applications that run over large-scale and mobile networks. Like RPC, TPS enforces type safety and encapsulation; unlike RPC, it provides decoupling and scalability. To illustrate, we discuss two TPS implementations in Java
- âŠ