65 research outputs found

    Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases.

    Get PDF
    Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases

    Glatiramer Acetate (Copaxone) Modulates Platelet Activation and Inhibits Thrombin-Induced Calcium Influx: Possible Role of Copaxone in Targeting Platelets during Autoimmune Neuroinflammation

    Get PDF
    Background: Glatiramer acetate (GA, Copaxone, Copolymer-1) is an FDA approved drug for the treatment of MS and it is very effective in suppressing neuroinflammation in experimental autoimmune encephalitis (EAE), an animal model of MS. Although this drug was designed to inhibit pathogenic T cells, the exact mechanism of EAE/MS suppression by GA is still not well understood. Previously we presented evidence that platelets become activated and promote neuroinflammation in EAE, suggesting a possible pathogenic role of platelets in MS and EAE. We hypothesized that GA could inhibit neuroinflammation by affecting not only immune cells but also platelets. Methodology/Principal Findings We investigated the effect of GA on the activation of human platelets in vitro: calcium influx, platelet aggregation and expression of activation markers. Our results in human platelets were confirmed by in-vitro and in-vivo studies of modulation of functions of platelets in mouse model. We found that GA inhibited thrombin-induced calcium influx in human and mouse platelets. GA also decreased thrombin-induced CD31, CD62P, CD63, and active form of αIIbβ3 integrin surface expression and formation of platelet aggregates for both mouse and human platelets, and prolonged the bleeding time in mice by 2.7-fold. In addition, we found that GA decreased the extent of macrophage activation induced by co-culture of macrophages with platelets. Conclusions: GA inhibited the activation of platelets, which suggests a new mechanism of GA action in suppression of EAE/MS by targeting platelets and possibly preventing their interaction with immune cells such as macrophages. Furthermore, the reduction in platelet activation by GA may have additional cardiovascular benefits to prevent thrombosis

    Early Growth Response Gene-2 Is Essential for M1 and M2 Macrophage Activation and Plasticity by Modulation of the Transcription Factor CEBPβ

    Get PDF
    The process of macrophage polarization is involved in many pathologies such as anti-cancer immunity and autoimmune diseases. Polarized macrophages exhibit various levels of plasticity when M2/M(IL-4) macrophages are reprogrammed into an M1-like phenotype following treatment with IFNγ and/or LPS. At the same time, M1 macrophages are resistant to reprogramming in the presence of M2-like stimuli. The molecular mechanisms responsible for the macrophages polarization, plasticity of M2 macrophages, and lack of plasticity in M1 macrophages remain unknown. Here, we explored the role of Egr2 in the induction and maintenance of macrophage M1 and M2 polarization in the mouse in vitro and in vivo models of inflammation. Egr2 knockdown with siRNA treatment fail to upregulate either M1 or M2 markers upon stimulation, and the overexpression of Egr2 potentiated M1 or M2 marker expression following polarization. Polarisation with M2-like stimuli (IL-4 or IL-13) results in increased Egr2 expression, but macrophages stimulated with M1-like stimuli (IFNγ, LPS, IL-6, or TNF) exhibit a decrease in Egr2 expression. Egr2 was critical for the expression of transcription factors CEBPβ and PPARγ in M2 macrophages, and CEBPβ was highly expressed in M1-polarized macrophages. In siRNA knockdown studies the transcription factor CEBPβ was found to negatively regulate Egr2 expression and is likely to be responsible for the maintenance of the M1-like phenotype and lack plasticity. During thioglycolate-induced peritonitis, adoptively transferred macrophages with Egr2 knockdown failed to become activated as determined by upregulation of MHC class II and CD86. Thus, our study indicates that Egr2 expression is associated with the ability of unstimulated or M2 macrophages to respond to stimulation with inflammatory stimuli, while low levels of Egr2 expression is associated with non-responsiveness of macrophages to their activation

    Neuronal extracellular microRNAs miR-124 and miR-9 mediate cell-cell communication between neurons and microglia

    Get PDF
    In contrast to peripheral macrophages, microglia in the central nervous system (CNS) exhibit a specific deactivated phenotype; however, it is not clear how this phenotype is maintained. Two alternative hypotheses were postulated recently: (a) microglia differ from peripheral macrophages being derived from the yolk sac (YS), whereas peripheral macrophages originate from bone marrow (BM); (b) microglia acquire a specific phenotype under the influence of the CNS microenvironment. We have previously shown that microglia express miR-124, which was also induced in BM-derived macrophages co-cultured with a neurons. We here investigated the possibility of horizontal transfer of the neuron-specific microRNAs miR-124 and miR-9 from primary neurons to microglia/macrophages. We found that after incubation with neuronal conditioned media (NCM), macrophages downregulated activation markers MHC class II and CD45. Neither cultured adult microglia nor YS- and BM-derived macrophages demonstrated intrinsic levels of miR-124 expression. However, after incubation with NCM, miR-124 was induced in both YS- and BM-derived macrophages. Biochemical analysis demonstrated that the NCM contained miR-124 and miR-9 in complex with small proteins, large high-density lipoproteins (HDLs), and exosomes. MiR-124 and miR-9 were promptly released from neurons, and this process was inhibited by tetrodotoxin, indicating an important role of neuronal electric activity in secretion of these microRNAs. Incubation of macrophages with exogenous miR-124 resulted in efficient translocation of miR-124 into the cytoplasm. This study demonstrates an important role of neuronal miRNAs in communication of neurons with microglia, which favors the hypothesis that microglia acquire a specific phenotype under the influence of the CNS microenvironment

    Visualization and quantitation of the expression of microRNAs and their target genes in neuroblastoma single cells using imaging cytometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are regulatory molecules that play an important role in many physiological processes, including cell growth, differentiation, and apoptosis. In addition to modulating normal cellular functions, it has also been reported that miRNAs are involved in the development of many pathologies, including cardiovascular diseases, cancer, inflammation, and neurodegeneration. Methods for the sensitive detection and measurement of specific miRNAs and their cellular targets are essential for both basic research endeavours, as well as diagnostic efforts aimed at understanding the role of miRNAs in disease processes.</p> <p>Findings</p> <p>In this study, we describe a novel, imaging cytometry-based protocol that allows for simultaneous visualisation and quantification of miRNAs and their putative targets. We validated this methodology in a neuronal cell line by examining the relationship of the miRNA miR-124 and its known target, cyclin dependent kinase 6 (CDK6). We found that ectopic overexpression of miR-124 resulted in the downregulation of CDK6, decreased cellular proliferation, and induced cellular morphological changes.</p> <p>Conclusions</p> <p>This method is suitable for analysing the expression and cellular localisation of miRNAs and target proteins in small cell subsets within a heterogeneous cell suspension. We believe that our cytometry-based methodology will be easily adaptable to miRNA studies in many areas of biomedical research including neuroscience, stem cell biology, immunology, and oncology.</p

    Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    Get PDF
    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation

    Fresh Evidence for Platelets as Neuronal and Innate Immune Cells: Their Role in the Activation, Differentiation, and Deactivation of Th1, Th17, and Tregs during Tissue Inflammation

    No full text
    Recent studies suggest that in addition to their common function in the regulation of thrombosis and hemostasis, platelets also contribute to tissue inflammation affecting adaptive immunity. Platelets have a number of pro-inflammatory and regulatory mediators stored in their α-granules and dense granules, which are promptly released at sites of inflammation or tissue injury. Platelet-derived mediators include cytokines (IL-1α, IL-1β, and TGFβ1), chemokines (CXCL4 and CCL3), immunomodulatory neurotransmitters (serotonin, dopamine, epinephrine, histamine, and GABA), and other low-molecular-weight mediators. In addition, activated platelets synthesize a number of lipid pro-inflammatory mediators such as platelet-activating factor and prostaglandins/thromboxanes. Notably, platelets express multiple toll-like receptors and MHC class I on their surface and store IgG in their α-granules. Platelet-derived factors are highly effective in directly or indirectly modulating the priming and effector function of various subsets of T cells. Besides secreting soluble factors, activated platelets upregulate a number of integrins, adhesion molecules, and lectins, leading to the formation of platelet–T cells aggregates. Activated platelets are able to instantly release neurotransmitters acting similar to neuronal presynaptic terminals, affecting CD4 T cells and other cells in close contact with them. The formation of platelet–T cell aggregates modulates the functions of T cells via direct cell–cell contact interactions and the local release of soluble factors including neurotransmitters. New data suggest an important role for platelets as neuronal and innate-like cells that directly recognize damage- or pathogen- associated molecular patterns and instantly communicate with T cells
    corecore