10 research outputs found

    Aerodynamics of trans-atmopsheric vehicles : a non-dimensional approach

    No full text
    The non-dimensional approach to aerodynamics of trans-atmospheric flight is discussed, which explicitly takes into account the vertical span of the atmosphere as well as atmospheric mass load (atmospheric pressure) at the current flight level. As an example, a simple analytic model of the dynamics of trans-atmospheric flight is considered for both powered boost and non-powered glide of a trans-atmospheric vehicle, and the applicability to more general, numerical models of atmospheric flight is discussed

    Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    No full text
    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered

    Nitrogen Adsorption on Silica Surfaces of Nonporous and Mesoporous Materials

    No full text

    Adjoint Sensitivity Analysis of Orbital Mechanics: Application to Computations of Observables' Partials with Respect to Harmonics of the Planetary Gravity Fields

    No full text
    An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics

    Simulation study of two-dimensional phase transitions of argon on graphite surface and in slit micropores

    No full text
    Molecular simulation has been increasingly used in the analysis and modeling of gas adsorption on open surfaces and in porous materials because greater insight could be gained from such a study. In case of homogeneous surfaces or pore walls the adsorption behavior is often complicated by the order-disorder transition. It is shown in our previous publications (Ustinov and Do, Langmuir 28:9543-9553, 2012a; Ustinov and Do, Adsorption 19:291-304, 2013) that once an ordered molecular layer has been formed on the surface, the lattice constant depends on the simulation box size, which requires adjusting the box dimensions parallel to the surface for each value of loading. It was shown that this can be accomplished with the Gibbs-Duhem equation, which results in decreasing lattice constant with an increase of the amount adsorbed. The same feature is expected to be valid for gas adsorption in narrow pores, but this has not been analyzed in the literature. This study aims at an extension of our approach to adsorption in slit graphitic pores using kinetic Monte Carlo method (Ustinov and Do, J Colloid Interface Sci 366:216-223, 2012b). The emphasis rests on the thermodynamic analysis of the two-dimensional (2D) ordering transition and state of the ordered phase; if the ordered phase exists in narrow slit pores, simulation with constant volume box always leads to erroneous results, for example, seemingly incompressible adsorbed phase. We proposed a new approach that allows for modeling thermodynamically consistent adsorption isotherms, which can be used as a basis for further refinement of the pore size distribution analysis of nanoporous materials

    Updated Model of Radar Backscatter for Rough Lunar Craters

    No full text
    We reexamined our radar scattering model for young, rough craters [1] based on unpublished data from the 1980's [2]. Our model for scattering from the lunar surface is a mixing model consisting of varying amounts of diffuse and specular components as shown in Figure 1. The specular component, which consists of only opposite-sense circular (OC) echoes, results from the mirror-like surface and sub-surface layers that are smooth to a tenth of a radar wavelength for large (>10 wavelengths) areas oriented perpendicular to the radar's line-ofsight. The diffuse component, which has both OC and same sense (SC) circular echoes, is associated with either surface roughness (wavelength-sized rocks) or ice, and is assumed to be uniformly bright, with backscatter being proportional to the cosine of the incidence angle. Only diffuse scattering contributes to the SC echoes

    Effects of melting and ordering on the isosteric heat and monolayer density of argon adsorption on graphite

    No full text
    The aim of this paper is to study the effects of temperature on the state of the adsorbed argon on an uniform graphite surface. We applied the kinetic Monte Carlo scheme to simulate adsorption over a very wide range of temperature, which allows us to model the vapor–solid, the vapor–liquid and the order–disorder transition of the monolayer. The main distinction of our methodology is that it accounts for the lattice constant change with loading in the case of formation of an ordered molecular layer by appropriately changing the simulation box size. To do this we enforced the equality of the tangential pressures obtained by the virial and thermodynamic routes, which corresponds to the minimum Helmholtz free energy of a system at a given number of molecules and volume. This criterion is a consequence of the Gibbs–Duhem equation. A significant result obtained by application of the new simulation method was a sharp contraction of the monolayer just after its completion and the onset of the second layer. It manifests itself in an additional heat release. We re-determined the 2D-melting and 2D-critical temperatures of the molecular layer of argon. We also analyzed the order–disorder transition above the 2D-melting and showed that it could occur at some temperatures above the 2D-critical temperature. In this case, a hexagonal lattice appears at a sufficiently large tangential pressure. The effects of loading on the lattice constant, the 2D-critical temperature of the order–disorder transition and the differential heat of adsorption are thoroughly discussed

    Capillary phenomena in the framework of the two-dimensional density functional theory

    No full text
    We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena
    corecore