7 research outputs found

    Bioturbo Similarity Searching: Combining Chemical and Biological Similarity To Discover Structurally Diverse Bioactive Molecules

    No full text
    Virtual screening using bioactivity profiles has become an integral part of currently applied hit finding methods in pharmaceutical industry. However, a significant drawback of this approach is that it is only applicable to compounds that have been biologically tested in the past and have sufficient activity annotations for meaningful profile comparisons. Although bioactivity data generated in pharmaceutical institutions are growing on an unprecedented scale, the number of biologically annotated compounds still covers only a minuscule fraction of chemical space. For a newly synthesized compound or an isolated natural product to be biologically characterized across multiple assays, it may take a considerable amount of time. Consequently, this chemical matter will not be included in virtual screening campaigns based on bioactivity profiles. To overcome this problem, we herein introduce bioturbo similarity searching that uses chemical similarity to map molecules without biological annotations into bioactivity space and then searches for biologically similar compounds in this reference system. In benchmark calculations on primary screening data, we demonstrate that our approach generally achieves higher hit rates and identifies structurally more diverse compounds than approaches using chemical information only. Furthermore, our method is able to discover hits with novel modes of inhibition that traditional 2D and 3D similarity approaches are unlikely to discover. Test calculations on a set of natural products reveal the practical utility of the approach for identifying novel and synthetically more accessible chemical matter

    Experimental Design Strategy: Weak Reinforcement Leads to Increased Hit Rates and Enhanced Chemical Diversity

    No full text
    High Throughput Screening (HTS) is a common approach in life sciences to discover chemical matter that modulates a biological target or phenotype. However, low assay throughput, reagents cost, or a flowchart that can deal with only a limited number of hits may impair screening large numbers of compounds. In this case, a subset of compounds is assayed, and <i>in silico</i> models are utilized to aid in iterative screening design, usually to expand around the found hits and enrich subsequent rounds for relevant chemical matter. However, this may lead to an overly narrow focus, and the diversity of compounds sampled in subsequent iterations may suffer. Active learning has been recently successfully applied in drug discovery with the goal of sampling diverse chemical space to improve model performance. Here we introduce a robust and straightforward iterative screening protocol based on naıĢˆve Bayes models. Instead of following up on the compounds with the highest scores in the <i>in silico</i> model, we pursue compounds with very low but positive values. This includes unique chemotypes of weakly active compounds that enhance the applicability domain of the model and increase the cumulative hit rates. We show in a retrospective application to 81 Novartis assays that this protocol leads to consistently higher compound and scaffold hit rates compared to a standard expansion around hits or an active learning approach. We recommend using the weak reinforcement strategy introduced herein for iterative screening workflows

    Experimental Design Strategy: Weak Reinforcement Leads to Increased Hit Rates and Enhanced Chemical Diversity

    No full text
    High Throughput Screening (HTS) is a common approach in life sciences to discover chemical matter that modulates a biological target or phenotype. However, low assay throughput, reagents cost, or a flowchart that can deal with only a limited number of hits may impair screening large numbers of compounds. In this case, a subset of compounds is assayed, and <i>in silico</i> models are utilized to aid in iterative screening design, usually to expand around the found hits and enrich subsequent rounds for relevant chemical matter. However, this may lead to an overly narrow focus, and the diversity of compounds sampled in subsequent iterations may suffer. Active learning has been recently successfully applied in drug discovery with the goal of sampling diverse chemical space to improve model performance. Here we introduce a robust and straightforward iterative screening protocol based on naıĢˆve Bayes models. Instead of following up on the compounds with the highest scores in the <i>in silico</i> model, we pursue compounds with very low but positive values. This includes unique chemotypes of weakly active compounds that enhance the applicability domain of the model and increase the cumulative hit rates. We show in a retrospective application to 81 Novartis assays that this protocol leads to consistently higher compound and scaffold hit rates compared to a standard expansion around hits or an active learning approach. We recommend using the weak reinforcement strategy introduced herein for iterative screening workflows

    A Screening Pattern Recognition Method Finds New and Divergent Targets for Drugs and Natural Products

    No full text
    Computational target prediction methods using chemical descriptors have been applied exhaustively in drug discovery to elucidate the mechanisms-of-action (MOAs) of small molecules. To predict truly novel and unexpected small moleculeā€“target interactions, compounds must be compared by means other than their chemical structure alone. Here we investigated predictions made by a method, HTS fingerprints (HTSFPs), that matches patterns of activities in experimental screens. Over 1,400 drugs and 1,300 natural products (NPs) were screened in more than 200 diverse assays, creating encodable activity patterns. The comparison of these activity patterns to an MOA-annotated reference panel led to the prediction of 5,281 and 2,798 previously unknown targets for the NP and drug sets, respectively. Intriguingly, there was limited overlap among the targets predicted; the drugs were more biased toward membrane receptors and the NPs toward soluble enzymes, consistent with the idea that they represent unexplored pharmacologies. Importantly, HTSFPs inferred targets that were beyond the prediction capabilities of standard chemical descriptors, especially for NPs but also for the more explored drug set. Of 65 drugā€“target predictions that we tested <i>in vitro</i>, 48 (73.8%) were confirmed with AC<sub>50</sub> values ranging from 38 nM to 29 Ī¼M. Among these interactions was the inhibition of cyclooxygenases 1 and 2 by the HIV protease inhibitor Tipranavir. These newly discovered targets that are phylogenetically and phylochemically distant to the primary target provide an explanation for spontaneous bleeding events observed for patients treated with this drug, a physiological effect that was previously difficult to reconcile with the drugā€™s known MOA

    Rethinking Molecular Similarity: Comparing Compounds on the Basis of Biological Activity

    No full text
    Since the advent of high-throughput screening (HTS), there has been an urgent need for methods that facilitate the interrogation of large-scale chemical biology data to build a mode of action (MoA) hypothesis. This can be done either prior to the HTS by subset design of compounds with known MoA or post HTS by data annotation and mining. To enable this process, we developed a tool that compares compounds solely on the basis of their bioactivity: the chemical biological descriptor ā€œhigh-throughput screening fingerprintā€ (HTS-FP). In the current embodiment, data are aggregated from 195 biochemical and cell-based assays developed at Novartis and can be used to identify bioactivity relationships among the in-house collection comprising āˆ¼1.5 million compounds. We demonstrate the value of the HTS-FP for virtual screening and in particular scaffold hopping. HTS-FP outperforms state of the art methods in several aspects, retrieving bioactive compounds with remarkable chemical dissimilarity to a probe structure. We also apply HTS-FP for the design of screening subsets in HTS. Using retrospective data, we show that a biodiverse selection of plates performs significantly better than a chemically diverse selection of plates, both in terms of number of hits and diversity of chemotypes retrieved. This is also true in the case of hit expansion predictions using HTS-FP similarity. Sets of compounds clustered with HTS-FP are biologically meaningful, in the sense that these clusters enrich for genes and gene ontology (GO) terms, showing that compounds that are bioactively similar also tend to target proteins that operate together in the cell. HTS-FP are valuable not only because of their predictive power but mainly because they relate compounds solely on the basis of bioactivity, harnessing the accumulated knowledge of a high-throughput screening facility toward the understanding of how compounds interact with the proteome

    Rethinking Molecular Similarity: Comparing Compounds on the Basis of Biological Activity

    No full text
    Since the advent of high-throughput screening (HTS), there has been an urgent need for methods that facilitate the interrogation of large-scale chemical biology data to build a mode of action (MoA) hypothesis. This can be done either prior to the HTS by subset design of compounds with known MoA or post HTS by data annotation and mining. To enable this process, we developed a tool that compares compounds solely on the basis of their bioactivity: the chemical biological descriptor ā€œhigh-throughput screening fingerprintā€ (HTS-FP). In the current embodiment, data are aggregated from 195 biochemical and cell-based assays developed at Novartis and can be used to identify bioactivity relationships among the in-house collection comprising āˆ¼1.5 million compounds. We demonstrate the value of the HTS-FP for virtual screening and in particular scaffold hopping. HTS-FP outperforms state of the art methods in several aspects, retrieving bioactive compounds with remarkable chemical dissimilarity to a probe structure. We also apply HTS-FP for the design of screening subsets in HTS. Using retrospective data, we show that a biodiverse selection of plates performs significantly better than a chemically diverse selection of plates, both in terms of number of hits and diversity of chemotypes retrieved. This is also true in the case of hit expansion predictions using HTS-FP similarity. Sets of compounds clustered with HTS-FP are biologically meaningful, in the sense that these clusters enrich for genes and gene ontology (GO) terms, showing that compounds that are bioactively similar also tend to target proteins that operate together in the cell. HTS-FP are valuable not only because of their predictive power but mainly because they relate compounds solely on the basis of bioactivity, harnessing the accumulated knowledge of a high-throughput screening facility toward the understanding of how compounds interact with the proteome

    Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers

    No full text
    SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases
    corecore