6 research outputs found

    Evaluation of Abdominal CT Obtained Using a Deep Learning-Based Image Reconstruction Engine Compared with CT Using Adaptive Statistical Iterative Reconstruction

    No full text
    Purpose: To compare the image quality of CT obtained using a deep learning-based image reconstruction (DLIR) engine with images with adaptive statistical iterative reconstruction-V (AV). Materials and Methods: Using a phantom, the noise power spectrum (NPS) and task-based transfer function (TTF) were measured in images with different reconstructions (filtered back projection [FBP], AV30, 50, 100, DLIR-L, M, H) at multiple doses. One hundred and twenty abdominal CTs with 30% dose reduction were processed using AV30, AV50, DLIR-L, M, H. Objective and subjective analyses were performed. Results: The NPS peak of DLIR was lower than that of AV30 or AV50. Compared with AV30, the NPS average spatial frequencies were higher with DLIR-L or DLIR-M. For lower contrast objects, TTF in images with DLIR were higher than those with AV. The standard deviation in DLIR-H and DLIR-M was significantly lower than AV30 and AV50. The overall image quality was the best for DLIR-M (p &lt; 0.001). Conclusions: DLIR showed improved image quality and decreased noise under a decreased radiation dose.</p

    Clinical Validation of an Artificial Intelligence Model for Detecting Distal Radius, Ulnar Styloid, and Scaphoid Fractures on Conventional Wrist Radiographs

    No full text
    This study aimed to assess the feasibility and performance of an artificial intelligence (AI) model for detecting three common wrist fractures: distal radius, ulnar styloid process, and scaphoid. The AI model was trained with a dataset of 4432 images containing both fractured and non-fractured wrist images. In total, 593 subjects were included in the clinical test. Two human experts independently diagnosed and labeled the fracture sites using bounding boxes to build the ground truth. Two novice radiologists also performed the same task, both with and without model assistance. The sensitivity, specificity, accuracy, and area under the curve (AUC) were calculated for each wrist location. The AUC for detecting distal radius, ulnar styloid, and scaphoid fractures per wrist were 0.903 (95% C.I. 0.887–0.918), 0.925 (95% C.I. 0.911–0.939), and 0.808 (95% C.I. 0.748–0.967), respectively. When assisted by the AI model, the scaphoid fracture AUC of the two novice radiologists significantly increased from 0.75 (95% C.I. 0.66–0.83) to 0.85 (95% C.I. 0.77–0.93) and from 0.71 (95% C.I. 0.62–0.80) to 0.80 (95% C.I. 0.71–0.88), respectively. Overall, the developed AI model was found to be reliable for detecting wrist fractures, particularly for scaphoid fractures, which are commonly missed

    Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test

    No full text
    (1) Introduction: Computed tomography (CT) and magnetic resonance imaging (MRI) play an important role in the diagnosis and evaluation of spinal diseases, especially degenerative spinal diseases. MRI is mainly used to diagnose most spinal diseases because it shows a higher resolution than CT to distinguish lesions of the spinal canals and intervertebral discs. When it is inevitable for CT to be selected instead of MR in evaluating spinal disease, evaluation of spinal disease may be limited. In these cases, it is very helpful to diagnose spinal disease with MR images synthesized with CT images. (2) Objective: To create synthetic lumbar magnetic resonance (MR) images from computed tomography (CT) scans using generative adversarial network (GAN) models and assess how closely the synthetic images resembled the true images using visual Turing tests (VTTs). (3) Material and Methods: Overall, 285 patients aged &ge; 40 years who underwent lumbar CT and MRI were enrolled. Based on axial CT and T2-weighted axial MR images from 285 patients, an image synthesis model using a GAN was trained using three algorithms (unsupervised, semi-supervised, and supervised methods). Furthermore, VTT to determine how similar the synthetic lumbar MR images generated from lumbar CT axial images were to the true lumbar MR axial images were conducted with 59 patients who were not included in the model training. For the VTT, we designed an evaluation form comprising 600 randomly distributed axial images (150 true and 450 synthetic images from unsupervised, semi-supervised, and supervised methods). Four readers judged the authenticity of each image and chose their first- and second-choice candidates for the true image. In addition, for the three models, structural similarities (SSIM) were evaluated and the peak signal to noise ratio (PSNR) was compared among the three methods. (4) Results: The mean accuracy for the selection of true images for all four readers for their first choice was 52.0% (312/600). The accuracies of determining the true image for each reader&rsquo;s first and first + second choices, respectively, were as follows: reader 1, 51.3% and 78.0%; reader 2, 38.7% and 62.0%, reader 3, 69.3% and 84.0%, and reader 4, 48.7% and 70.7%. In the case of synthetic images chosen as first and second choices, supervised algorithm-derived images were the most often selected (supervised, 118/600 first and 164/600 second; semi-supervised, 90/600 and 144/600; and unsupervised, 80/600 and 114/600). For image quality, the supervised algorithm received the best score (PSNR: 15.987 &plusmn; 1.039, SSIM: 0.518 &plusmn; 0.042). (5) Conclusion: This was the pilot study to apply GAN to synthesize lumbar spine MR images from CT images and compare training algorithms of the GAN. Based on VTT, the axial MR images synthesized from lumbar CT using GAN were fairly realistic and the supervised training algorithm was found to provide the closest image to true images
    corecore