7 research outputs found

    The fibronectin-binding motif within FlpA facilitates Campylobacter jejuni

    No full text
    Campylobacter jejuni is a gram-negative, curved and rod-shaped bacterium that causes human gastroenteritis. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Epithelial cells infected with C. jejuni strains containing mutations in the FlpA and CadF fibronectin (Fn)-binding proteins exhibit reduced invasion of host cells and a C. jejuni CadF FlpA double mutant is impaired in the activation of epidermal growth factor receptor (EGFR) and Rho GTPase Rac1. Although these observations establish a role for Fn-binding proteins during C. jejuni invasion, their mechanistic contributions to invasion-associated signaling are unclear. We examined FlpA, a C. jejuni Fn-binding protein composed of three FNIII-like repeats D1, D2 and D3, to identify the interactions required for cellular adherence on pathogen-induced host cell signaling. We report that FlpA binds the Fn gelatin-binding domain via a motif within the D2 repeat. Epithelial cells infected with a flpA mutant exhibited decreased Rac1 activation and reduced membrane ruffling that coincided with impaired delivery of the secreted Cia proteins and reduced cell association. Phosphorylation of the Erk1/2 kinase, a downstream effector of EGFR signaling, was specifically associated with FlpA-mediated activation of β(1)-integrin and EGFR signaling. In vivo experiments revealed that FlpA is necessary for C. jejuni disease based on bacterial dissemination to the spleen of IL-10(−/−) germ-free mice. Thus, a novel Fn-binding motif within FlpA potentiates activation of Erk1/2 signaling via β(1)-integrin during C. jejuni infection

    Invasion and replication of Yersinia ruckeri in fish cell cultures

    No full text
    Abstract Background Like many members of the Enterobacteriaceae family, Yersinia ruckeri has the ability to invade non professional phagocytic cells. Intracellular location is advantageous for the bacterium because it shields it from the immune system and can help it cross epithelial membranes and gain entry into the host. In the present manuscript, we report on our investigation regarding the mechanisms of Y. ruckeri’s invasion of host cells. Results A gentamycin assay was applied to two isolates, belonging to both the biotype 1 (ATCC 29473) and biotype 2 (A7959–11) and using several cell culture types: Atlantic Salmon Kidney, Salmon Head Kidney and, Chinook salmon embryos cells at both low and high passage numbers. Varying degrees of sensitivity to Y. ruckeri infection were found between the cell types and the biotype 1 strain was found to be more invasive than the non-motile biotype 2 isolate. Furthermore, the effect of six chemical compounds (Cytochalasin D, TAE 226, vinblastine, genistein, colchicine and, N-acetylcysteine), known to interfere with bacterial invasion strategies, were investigated. All of these compounds had a significant impact on the ability of the bacterium to invade host cells. Changes in the concentration of bacterial cells over time were investigated and the results suggested that neither isolate could survive intracellularly for sustained periods. Conclusions These results suggest that Y. ruckeri can gain entrance into host cells through several mechanisms, and might take advantage of both the actin and microtubule cytoskeletal systems

    Mild Concussion, but Not Moderate Traumatic Brain Injury, Is Associated with Long-Term Depression-Like Phenotype in Mice

    No full text
    Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1-7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI
    corecore