21 research outputs found

    Superstructure and Correlated Na+ Hopping in a Layered Mg-Substituted Sodium Manganate Battery Cathode are Driven by Local Electroneutrality

    Get PDF
    Acknowledgments ARTICLE SECTIONSJump To E.N.B. acknowledges funding from the Engineering Physical Sciences Research Council (EPSRC) via the National Productivity Interest Fund (NPIF) 2018 (EP/S515334/1). J.D.B. acknowledges funding from the Faraday Institution (EP/S003053/1, FIRG016). The authors also thank the Science and Technology Facilities Council (STFC) and ISIS Neutron and Muon source for neutron data (experiment no.: RB2010350). Additional thanks are given to the staff scientists at beamline I11 of the Diamond Light Source for synchrotron data using block allocation group time under proposal CY34243. This work also utilized the ARCHER UK National Supercomputing Service via our membership in the UK’s HEC Materials Chemistry Consortium, funded by the EPSRC (EP/L000202). The research was also carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, through the U.S. Department of Energy, Office of Basic Energy Sciences, Contract DE-AC02-98CH10866. E.N.B. would also like to thank A. Van der Ven and M.A. Jones for illuminating discussions.Peer reviewedPublisher PD

    Probing Jahn-Teller Distortions and Antisite Defects in LiNiO2 with 7Li NMR Spectroscopy and Density Functional Theory

    Get PDF
    A.R.G.-S. and C.S.C. contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.Peer reviewe

    Structural origins of voltage mysteresis in the Na-Ion cathode P2-Na0.67[Mg0.28Mn0.72]O2 : A combined spectroscopic and density functional theory study

    Get PDF
    Funding Information: E.N.B. acknowledges funding from the Engineering Physical Sciences Research Council (EPSRC) via the National Productivity Interest Fund (NPIF) 2018 and is also grateful for use of the ARCHER UK National Supercomputing Service via our membership in the UK’s HEC Materials Chemistry Consortium, funded by the EPSRC (EP/L000202). Research was also carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, through the U.S. Department of Energy, Office of Basic Energy Sciences, Contract DE-AC02-98CH10866. P.J.R. thanks the Northeast Centre for Chemical Energy Storage (NECCES), an Energy Frontier Research Centre funded by the US Department of Energy, Office of Basic Energy Sciences, award DE-SC0012583. M.A.J. is grateful for the financial support of the EPSRC Centre for Doctoral Training (CDT) in Nanoscience and Nanotechnology Award EP/L015978/1. J.L. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (no. 2019R1A6A1A10073437). E.N.B. also wishes to thank Dr M.F. Groh for assistance with setting up capillary XRD measurements. Publisher Copyright: ©Peer reviewedPublisher PD

    Oxygen hole formation controls stability in LiNiO2 cathodes

    Get PDF
    Ni-rich lithium-ion cathode materials achieve both high voltages and capacities but are prone to structural instabilities and oxygen loss. The origin of the instability lies in the pronounced oxidation of O during delithiation: for LiNiO2, NiO2, and the rock salt NiO, density functional theory and dynamical mean-field theory calculations based on maximally localized Wannier functions yield a Ni charge state of ca. +2, with O varying between −2 (NiO), −1.5 (LiNiO2), and −1 (NiO2). Calculated X-ray spectroscopy Ni K and O K-edge spectra agree well with experimental spectra. Using ab initio molecular dynamics simulations, we observe loss of oxygen from the (012) surface of delithiated LiNiO2, two surface O⋅− radicals combining to form a peroxide ion, and the peroxide ion being oxidized to form O2, leaving behind two O vacancies and two O2− ions. Preferential release of 1O2 is dictated via the singlet ground state of the peroxide ion and spin conservation

    Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS)2.

    Get PDF
    Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically simple layered molecular frameworks. Here, we report two new members of the family, manganese(II) thiocyanate, Mn(NCS)2, and iron(II) thiocyanate, Fe(NCS)2. Using magnetic susceptibility measurements on these materials and on cobalt(II) thiocyanate and nickel(II) thiocyanate, Co(NCS)2 and Ni(NCS)2, respectively, we identify significantly stronger net antiferromagnetic interactions between the earlier TM ions-a decrease in the Weiss constant, θ, from 29 K for Ni(NCS)2 to -115 K for Mn(NCS)2-a consequence of more diffuse 3d orbitals, increased orbital overlap, and increasing numbers of unpaired t2g electrons. We elucidate the magnetic structures of these materials: Mn(NCS)2, Fe(NCS)2, and Co(NCS)2 order into the same antiferromagnetic commensurate ground state, while Ni(NCS)2 adopts a ground state structure consisting of ferromagnetically ordered layers stacked antiferromagnetically. We show that significantly stronger exchange interactions can be realized in these thiocyanate frameworks by using earlier TMs.EPSRC NPIF 2018 fund Laboratory Directed Research and Development Program of Oak Ridge National Laboratory NSERC of Canada PGSD fund Trinity College, Cambridge School of Chemistry, University of Nottingham Hobday Fellowship EPSRC Strategic Equipment Grant EP/M000524/

    17O NMR Spectroscopy in Lithium-Ion Battery Cathode Materials: Challenges and Interpretation.

    Get PDF
    Modern studies of lithium-ion battery (LIB) cathode materials employ a large range of experimental and theoretical techniques to understand the changes in bulk and local chemical and electronic structures during electrochemical cycling (charge and discharge). Despite its being rich in useful chemical information, few studies to date have used 17O NMR spectroscopy. Many LIB cathode materials contain paramagnetic ions, and their NMR spectra are dominated by hyperfine and quadrupolar interactions, giving rise to broad resonances with extensive spinning sideband manifolds. In principle, careful analysis of these spectra can reveal information about local structural distortions, magnetic exchange interactions, structural inhomogeneities (Li+ concentration gradients), and even the presence of redox-active O anions. In this Perspective, we examine the primary interactions governing 17O NMR spectroscopy of LIB cathodes and outline how 17O NMR may be used to elucidate the structure of pristine cathodes and their structural evolution on cycling, providing insight into the challenges in obtaining and interpreting the spectra. We also discuss the use of 17O NMR in the context of anionic redox and the role this technique may play in understanding the charge compensation mechanisms in high-capacity cathodes, and we provide suggestions for employing 17O NMR in future avenues of research.E.N.B. acknowledges funding from the Engineering Physical Sciences Research Council (EPSRC) via the National Productivity Interest Fund (NPIF) 2018. E.N.B. would also like to thank K.R. Bassey for assistance with figure preparation and invaluable advice and discussions
    corecore