1,353 research outputs found

    Integral formulas for wave functions of quantum many-body problems and representations of gl(n)

    Full text link
    We derive explicit integral formulas for eigenfunctions of quantum integrals of the Calogero-Sutherland-Moser operator with trigonometric interaction potential. In particular, we derive explicit formulas for Jack's symmetric functions. To obtain such formulas, we use the representation of these eigenfunctions by means of traces of intertwining operators between certain modules over the Lie algebra gln\frak gl_n, and the realization of these modules on functions of many variables.Comment: 6 pages. One reference ([FF]) has been corrected. New references and an introduction have been adde

    Introduction to co-split Lie algebras

    Full text link
    In this work, we introduce a new concept which is obtained by defining a new compatibility condition between Lie algebras and Lie coalgebras. With this terminology, we describe the interrelation between the Killing form and the adjoint representation in a new perspective

    On Vafa's theorem for tensor categories

    Full text link
    In this note we prove two main results. 1. In a rigid braided finite tensor category over C (not necessarily semisimple), some power of the Casimir element and some even power of the braiding is unipotent. 2. In a (semisimple) modular category, the twists are roots of unity dividing the algebraic integer D^{5/2}, where D is the global dimension of the category (the sum of squares of dimensions of simple objects). Both results generalize Vafa's theorem, saying that in a modular category twists are roots of unity, and square of the braiding has finite order. We also discuss the notion of the quasi-exponent of a finite rigid tensor category, which is motivated by results 1 and 2 and the paper math/0109196 of S.Gelaki and the author.Comment: 6 pages, late
    corecore