31 research outputs found

    Hydrostatic and Physiologic Contributions to Intraocular Pressure Change During Postural Change

    Get PDF
    Many studies have observed that intraocular pressure (IOP) is dependent on tilt angle () during postural change. In this work, we aggregated 36 independent datasets from 30 published articles, representing 821 subjects, which reported data on IOP during postural change. From this data, we developed a generalized quantitative relationship between IOP and . We then compared the experimentally derived results to simulated predictions generated by our lumped parameter model of the eye, LPEye, considering only hydrostatic effects. The difference between the analytical and simulated values of IOP can be used to quantify the physiologic regulatory contribution

    The preparation of HEMA-MPC films for ocular drug delivery

    Get PDF
    There is a need to prolong drug residence time using a biocompatible formulation in the subconjunctival space after surgery to treat glaucoma. Drug releasing discs were prepared with 2-(hydroxyethyl)methacrylate (HEMA) and 2-methacryloyl-oxyethyl phosphorylcholine (MPC). The ratio of bound water (Wb) to free water (Wf) ratio increased from 1:0.3 to 1:6.8 with increasing MPC (0 to 50%, w/w). The optimal balance between water content, SR and mechanical strength were obtained with 10% MPC (w/w) hydrogels. Water-alcohol mixtures were examined to facilitate loading of poorly soluble drugs, and they showed greater hydrogel swelling than either water or alcohol alone. The SR was 1.2 ± 0.02 and 3.3 ± 0.1 for water and water:ethanol (1:1) respectively. HEMA-MPC (10%) discs were loaded with dexamethasone using either water:ethanol (1:1) or methanol alone. Drug release was examined in an outflow rig model that mimics the subconjunctival space in the eye. Dexamethasone loading increased from 0.3 to 1.9 mg/disc when the solvent was changed from water:ethanol (1:1) to methanol with the dexamethasone half-life (t½) increasing from 1.9 to 9.7 days respectively. These encouraging results indicate that HEMA-MPC hydrogels have the potential to sustain the residence time of a drug in the subconjunctival space of the eye
    corecore