34 research outputs found

    Combined rTMS/fMRI studies: An overlooked resource in animal models

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions

    Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats

    Get PDF
    Background Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. Objective Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). Methods Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n=9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. Results 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. Conclusion Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing “top-up” stimulation sessions to maintain therapeutic effects

    Manipulation-induced hypoalgesia in musculoskeletal pain populations: A systematic critical review and meta-analysis

    Get PDF
    Background Manipulation-induced hypoalgesia (MIH) represents reduced pain sensitivity following joint manipulation, and has been documented in various populations. It is unknown, however, whether MIH following high-velocity low-amplitude spinal manipulative therapy is a specific and clinically relevant treatment effect. Methods This systematic critical review with meta-analysis investigated changes in quantitative sensory testing measures following high-velocity low-amplitude spinal manipulative therapy in musculoskeletal pain populations, in randomised controlled trials. Our objectives were to compare changes in quantitative sensory testing outcomes after spinal manipulative therapy vs. sham, control and active interventions, to estimate the magnitude of change over time, and to determine whether changes are systemic or not. Results Fifteen studies were included. Thirteen measured pressure pain threshold, and four of these were sham-controlled. Change in pressure pain threshold after spinal manipulative therapy compared to sham revealed no significant difference. Pressure pain threshold increased significantly over time after spinal manipulative therapy (0.32 kg/cm2, CI 0.22–0.42), which occurred systemically. There were too few studies comparing to other interventions or for other types of quantitative sensory testing to make robust conclusions about these. Conclusions We found that systemic MIH (for pressure pain threshold) does occur in musculoskeletal pain populations, though there was low quality evidence of no significant difference compared to sham manipulation. Future research should focus on the clinical relevance of MIH, and different types of quantitative sensory tests

    Pressure pain threshold and temporal summation in adults with episodic and persistent low back pain trajectories: A secondary analysis at baseline and after lumbar manipulation or sham

    Get PDF
    Background People with chronic low back pain (LBP) typically have increased pain sensitivity compared to healthy controls, however its unknown if pain sensitivity differs based on LBP trajectory at baseline or after manual therapy interventions. We aimed to compare baseline pressure pain threshold (PPT) and temporal summation (TS) between people without LBP, with episodic LBP, and with persistent LBP, and to compare changes over time in PPT and TS after a lumbar spinal manipulation or sham manipulation in those with LBP. Methods Participants were aged 18–59, with or without LBP. Those with LBP were categorised as having either episodic or persistent LBP. PPT and TS were tested at baseline. LBP participants then received a lumbar spinal manipulation or sham, after which PPT and TS were re-tested three times over 30 min. Generalised linear mixed models were used to analyse data. Results One hundred participants (49 female) were included and analysed. There were 20 non-LBP participants (mean age 31 yrs), 23 episodic LBP (mean age 35 yrs), and 57 persistent LBP (mean age 37 yrs). There were no significant differences in PPT or TS between groups at baseline. There was a non-significant pattern of lower PPT (higher sensitivity) from the non-LBP group to the persistent LBP group at baseline, and high variability. Changes in PPT and TS after the interventions did not differ between the two LBP groups. Discussion We found no differences between people with no LBP, episodic LBP, or persistent LBP in baseline PPT or TS. Changes in PPT and TS following a lumbar manual therapy intervention do not appear to differ between LBP trajectories

    Validation of chronic restraint stress model in young adult rats for the study of depression using longitudinal multimodal MR imaging

    Get PDF
    Prior research suggests that the neurobiological underpinnings of depression include aberrant brain functional connectivity, neurometabolite levels, and hippocampal volume. Chronic restraint stress (CRS) depression model in rats has been shown to elicit behavioral, gene expression, protein, functional connectivity, and hippocampal volume changes similar to those in human depression. However, no study to date has examined the association between behavioral changes and brain changes within the same animals. This study specifically addressed the correlation between the outcomes of behavioral tests and multiple 9.4 T magnetic resonance imaging (MRI) modalities in the CRS model using data collected longitudinally in the same animals. CRS involved placing young adult male Sprague Dawley rats in individual transparent tubes for 2.5 h daily over 13 d. Elevated plus maze (EPM) and forced swim tests (FSTs) confirmed the presence of anxiety-like and depression-like behaviors, respectively, postrestraint. Resting-state functional MRI (rs-fMRI) data revealed hypoconnectivity within the salience and interoceptive networks and hyperconnectivity of several brain regions to the cingulate cortex. Proton magnetic resonance spectroscopy revealed decreased sensorimotor cortical glutamate (Glu), glutamine (Gln), and combined Glu-Gln (Glx) levels. Volumetric analysis of T2-weighted images revealed decreased hippocampal volume. Importantly, these changes parallel those found in human depression, suggesting that the CRS rodent model has utility for translational studies and novel intervention development for depression

    Repetitive low intensity magnetic field stimulation in a neuronal cell line: a metabolomics study

    Get PDF
    Low intensity repetitive magnetic stimulation of neural tissue modulates neuronal excitability and has promising therapeutic potential in the treatment of neurological disorders. However, the underpinning cellular and biochemical mechanisms remain poorly understood. This study investigates the behavioural effects of low intensity repetitive magnetic stimulation (LI-rMS) at a cellular and biochemical level. We delivered LI-rMS (10 mT) at 1 Hz and 10 Hz to B50 rat neuroblastoma cells in vitro for 10 minutes and measured levels of selected metabolites immediately after stimulation. LI-rMS at both frequencies depleted selected tricarboxylic acid (TCA) cycle metabolites without affecting the main energy supplies. Furthermore, LI-rMS effects were frequency-specific with 1 Hz stimulation having stronger effects than 10 Hz. The observed depletion of metabolites suggested that higher spontaneous activity may have led to an increase in GABA release. Although the absence of organised neural circuits and other cellular contributors (e.g., excitatory neurons and glia) in the B50 cell line limits the degree to which our results can be extrapolated to the human brain, the changes we describe provide novel insights into how LI-rMS modulates neural tissue

    Accelerated low-intensity rTMS does not rescue anxiety behaviour or abnormal connectivity in young adult rats following chronic restraint stress

    Get PDF
    Currently approved repetitive transcranial magnetic stimulation (rTMS) protocols for the treatment of major depressive disorder (MDD) involve once-daily (weekday) stimulation sessions, with 10 Hz or intermittent theta burst stimulation (iTBS) frequencies, over 4–6 weeks. Recently, accelerated treatment protocols (multiple daily stimulation sessions for 1–2 weeks) have been increasingly studied to optimize rTMS treatments. Accelerated protocols might confer unique advantages for adolescents and young adults but there are many knowledge gaps related to dosing in this age group. Off-label, clinical practice frequently outpaces solid evidence as rigorous clinical trials require substantial time and resources. Murine models present an opportunity for high throughput dose finding studies to focus subsequent clinical trials in humans. This project investigated the brain and behavioural effects of an accelerated low-intensity rTMS (LI-rTMS) protocol in a young adult rodent model of chronic restraint stress (CRS). Depression and anxiety-related behaviours were induced in young adult male Sprague Dawley rats using the CRS model, followed by the 3-times-daily delivery of 10 Hz LI-rTMS, for two weeks. Behaviour was assessed using the Elevated Plus Maze and Forced Swim Test, and functional, chemical, and structural brain changes measured using magnetic resonance imaging techniques. CRS induced an agitated depression-like phenotype but therapeutic effects from the accelerated protocol were not detected. Our findings suggest that the age of rodents may impact response to CRS and LI-rTMS. Future studies should also examine higher intensities of rTMS and accelerated theta burst protocols

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Postnatal development of intrinsic and synaptic properties transforms signaling in the Layer 5 excitatory neural network of the visual cortex

    Get PDF
    Information flow in neocortical circuits is regulated by two key parameters: intrinsic neuronal properties and the short-term activity-dependent plasticity of synaptic transmission. Using multineuronal whole-cell voltage recordings, we characterized the postnatal maturation of the electrophysiological properties and short-term plasticity of excitatory synaptic transmission between pairs of layer 5 (L5) pyramidal neurons (n = 158) in acute slices of rat visual cortex over the first postnatal month. We found that the intrinsic and synaptic properties of L5 pyramidal neurons develop in parallel. Before postnatal day 15 (P15), intrinsic electrophysiological properties were tuned to low-frequency operation, characterized by high apparent input resistance, a long membrane time constant, and prolonged somatic action potentials. Unitary excitatory synaptic potentials were of large amplitude (P11-P15; median, 514 mu V), but showed pronounced use-dependent depression during prolonged regular and physiologically relevant presynaptic action potential firing patterns. In contrast, in mature animals we observed a developmental decline of the peak amplitude of unitary EPSPs (P25-P29; median, 175 mu V) paralleled by a decrease in apparent input resistance, membrane time constant, and somatic action potential duration. Notably, synaptic signaling of complex action potential firing patterns was also transformed, with P25-P29 connections faithfully signaling action potential trains at frequencies up to 40 Hz (1st to 50th action potential ratio, 0.91 +/- 0.12). Postnatal refinement of intrinsic properties and short-term plasticity therefore transforms the capacity of the L5 excitatory neural network of the visual cortex to generate and process patterns of action potential firing and contribute to network activity

    Role for the skeletal muscle action potential in non-Hebbian long-term depression at the amphibian (Bufo marinus) neuromuscular junction.

    Get PDF
    Retrograde signaling from skeletal muscle cells to motor nerve terminals is a recognized mechanism for modulating the strength of neuromuscular transmission. We recently described a form of long-term depression of transmitter release at the mature neuromuscular junction that is dependent on the production of nitric oxide, most likely by the muscle cell (Etherington and Everett 2004 J Physiol (Lond) 559:507-517). We now show that the depression is blocked by treating neuromuscular preparations with mu-conotoxin G111A, an antagonist of skeletal muscle voltage gated sodium channels, indicating that the depression requires postsynaptic action potential firing. Experiments on dually-innervated sartorius muscles revealed that propagation of action potentials generated by low-frequency stimulation of one nerve branch gives rise to nitric-oxide mediated depression at unstimulated nerve terminals located many millimetres away on the same muscle fiber. The non-Hebbian pattern of expression of the depression, as well as its reliance on postsynaptic action potential firing, distinguish it from forms of synaptic depression described at immature neuromuscular synapses and may provide a mechanism for coregulation of the strength of motoneurons innervating the same postsynaptic cell
    corecore