24 research outputs found

    Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages

    Get PDF
    Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages

    Efficacy of Flecainide in the Treatment of Catecholaminergic Polymorphic Ventricular Tachycardia: A Randomized Clinical Trial

    No full text
    Importance: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal genetic arrhythmia syndrome characterized by polymorphic ventricular tachycardia with physical or emotional stress, for which current therapy with β-blockers is incompletely effective. Flecainide acetate directly suppresses sarcoplasmic reticulum calcium release-the cellular mechanism responsible for triggering ventricular arrhythmias in CPVT-but has never been assessed prospectively. Objective: To determine whether flecainide dosed to therapeutic levels and added to β-blocker therapy is superior to β-blocker therapy alone for the prevention of exercise-induced arrhythmias in CPVT. Design, Setting, and Participants: This investigator-initiated, multicenter, single-blind, placebo-controlled crossover clinical trial was conducted from December 19, 2011, through December 29, 2015, with a midtrial protocol change at 10 US sites. Patients with a clinical diagnosis of CPVT and an implantable cardioverter-defibrillator underwent a baseline exercise test while receiving maximally tolerated β-blocker therapy that was continued throughout the trial. Patients were then randomized to treatment A (flecainide or placebo) for 3 months, followed by exercise testing. After a 1-week washout period, patients crossed over to treatment B (placebo or flecainide) for 3 months, followed by exercise testing. Interventions: Patients received oral flecainide or placebo twice daily, with the dosage guided by trough serum levels. Main Outcomes and Measures: The primary end point of ventricular arrhythmias during exercise was compared between the flecainide and placebo arms. Exercise tests were scored on an ordinal scale of worst ventricular arrhythmia observed (0 indicates no ectopy; 1, isolated premature ventricular beats; 2, bigeminy; 3, couplets; and 4, nonsustained ventricular tachycardia). Results: Of 14 patients (7 males and 7 females; median age, 16 years [interquartile range, 15.0-22.5 years]) randomized, 13 completed the study. The median baseline exercise test score was 3.0 (range, 0-4), with no difference noted between the baseline and placebo (median, 2.5; range, 0-4) exercise scores. The median ventricular arrhythmia score during exercise was significantly reduced by flecainide (0 [range, 0-2] vs 2.5 [range, 0-4] for placebo; P < .01), with complete suppression observed in 11 of 13 patients (85%). Overall and serious adverse events did not differ between the flecainide and placebo arms. Conclusions and Relevance: In this randomized clinical trial of patients with CPVT, flecainide plus β-blocker significantly reduced ventricular ectopy during exercise compared with placebo plus β-blocker and β-blocker alone
    corecore