18 research outputs found

    Multiproxy Terrestrial Records of Climatic and Ecological Change During the Early Eocene Climatic Optimum.

    Full text link
    The Eocene (~56–34 million years ago) was a period of major global changes, and perhaps the most substantial of these changes occurred during the Early Eocene Climatic Optimum (EECO), a period of extreme global warmth that lasted for as much as 3 million years (53–50 million years ago). These warm conditions make the EECO an important period for understanding Earth’s climate system and its impact on the biosphere, as current projections of the future include many of the conditions experienced during the early Eocene. Problematically, few records of terrestrial conditions exist during this time period, so in order to address many of the outstanding questions about what the early Eocene may have looked like on land, this dissertation employs a multiproxy approach using a wide variety of terrestrial-based paleosol and geochemical techniques as well as carbon cycle modeling in order to constrain and explore the climatic and ecological conditions of the early Eocene. This dissertation introduces the EECO and the methods employed for expanding high-resolution terrestrial records during the event, presents the first high-resolution multiproxy record of the EECO on land from a site in the Green River Basin (southwest Wyoming), develops a new proxy for paleoprecipitation based on the magnetic properties of modern soils and applies this new proxy to the EECO, compares the Green River Basin record to new multiproxy record from the nearby Wind River Basin, presents a multiproxy record from the Southern Hemisphere (Salta Basin, Argentina), and finally develops a global carbon cycle model to test different causal mechanisms of the EECO based on the presented proxy data. Overall we find distinct similarities between temperate region responses in both hemispheres, and suggest that the transient nature and terrestrial conditions of the peak EECO are inconsistent with previously suggested causal mechanisms. This dissertation contributes to our understanding of different climate states, and attempts to explore both the causes of and terrestrial responses to major warming events in the past, while providing both new techniques for developing terrestrial records and a platform for more detailed spatial and temporal examinations of rapid climatic events and their causes.PHDGeologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107099/1/hylande_1.pd

    Representational Bias in Phytoliths from Modern Soils of Central North America: Implications for Paleovegetation Reconstructions

    Full text link
    Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology or Earth and Environmental Sciences, Department of Earth and Environmental SciencesUnderstanding localized patterns and community compositions of vegetation in an environment is critical to the reconstruction of climatic and ecological conditions across all spatiotemporal scales. One of the most accurate and useful ways to characterize vegetation, and therefore to describe the climatic and ecological conditions of a location, is through the plant fossil record. Phytoliths (plant silica microfossils) are often preserved in the absence of other paleobotanical data and are becoming more widely used for deep-time vegetation reconstructions. Significant work has been done to standardize the analytical methodology of phytolith extraction, statistical analysis, and interpretation, but more detailed investigations are needed to understand how well a given phytolith assemblage represents the aboveground plant biomass for a given ecosystem. We present results from paired soil phytolith assemblages and local vegetation assemblages across the central United States, from temperate forest, grassland, and rangeland/scrubland ecosystems. Phytolith assemblages from soil A-horizons were compared to percent cover of species and plant biomass estimates obtained via field observations and aerial estimates of tree cover to analyze differences in the relative abundance of forest or woody vegetation versus grasses. Soil phytolith assemblages from all sites average a 32% bias toward the grass morphotypes as compared to actual aboveground biomass observations, and comparisons to percent cover yielded broadly comparable bias figures. Percent bias estimates do not show significant correlations to most environmental factors (temperature, precipitation, local elevation), however, an extremely strong correlation (p< 0.001) was observed with soil order type. As a result, we suggest further research into the development of correction factors between phytolith sample assemblages and their inferred past counterpart ecosystems based on estimates derived from modern analyses of each major soil order type. Such corrections are essential to the continued use of phytoliths as a proxy for past vegetation and ecological reconstructions throughout the Phanerozoic record.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98093/1/Hyland_Ethan_MS_2012.pdf1

    Rise of the Colorado Plateau: A Synthesis of Paleoelevation Constraints From the Region and a Path Forward Using Temperature-Based Elevation Proxies

    Get PDF
    The Colorado Plateau’s complex landscape has motivated over a century of debate, key to which is understanding the timing and processes of surface uplift of the greater Colorado Plateau region, and its interactions with erosion, drainage reorganization, and landscape evolution. Here, we evaluate what is known about the surface uplift history from prior paleoelevation estimates from the region by synthesizing and evaluating estimates 1) in context inferred from geologic, geomorphic, and thermochronologic constraints, and 2) in light of recent isotopic and paleobotanical proxy method advancements. Altogether, existing data and estimates suggest that half-modern surface elevations were attained by the end of the Laramide orogeny (∼40 Ma), and near-modern surface elevations by the mid-Miocene (∼16 Ma). However, our analysis of paleoelevation proxy methods highlights the need to improve proxy estimates from carbonate and floral archives including the ∼6–16 Ma Bidahochi and ∼34 Ma Florissant Formations and explore understudied (with respect to paleoelevation) Laramide basin deposits to fill knowledge gaps. We argue that there are opportunities to leverage recent advancements in temperature-based paleoaltimetry to refine the surface uplift history; for instance, via systematic comparison of clumped isotope and paleobotanical thermometry methods applied to lacustrine carbonates that span the region in both space and time, and by use of paleoclimate model mediated lapse rates in paleoelevation reconstruction

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Unified Access to Pyrimidines and Quinazolines Enabled by N-N Cleaving Carbon Atom Insertion

    No full text
    Given the ubiquity of heterocycles in biologically active molecules, transformations with the capacity to modify such molecular skeletons with modularity remain highly desirable. Ring expansions that enable interconversion of privileged heterocyclic motifs are especially interesting in this regard. As such, the known mechanisms for ring expansion and contraction determine the classes of heterocycle amenable to skeletal editing. Herein, we report a reaction that selectively cleaves the N-N bond of pyrazole and indazole cores to afford pyrimidines and quinazolines, respectively. This chlorodiazirine-mediated reaction provides a unified route to a related pair of heterocycles that are otherwise typically prepared by divergent approaches. Mechanistic experiments and DFT calculations support a pathway involving pyrazolium ylide fragmentation followed by cyclization of the ring-opened diazahexatriene intermediate to yield the new diazine core. Beyond enabling access to valuable heteroarenes from easily prepared starting materials, we demonstrate the synthetic utility of skeletal editing in the synthesis of a Rosuvastatin analog as well as in an aryl vector-adjusting direct scaffold hop

    Unified Access to Pyrimidines and Quinazolines Enabled by N–N Cleaving Carbon Atom Insertion

    No full text
    Given the ubiquity of heterocycles in biologically active molecules, transformations with the capacity to modify such molecular skeletons with modularity remain highly desirable. Ring expansions that enable interconversion of privileged heterocyclic motifs are especially interesting in this regard. As such, the known mechanisms for ring expansion and contraction determine the classes of heterocycle amenable to skeletal editing. Herein, we report a reaction that selectively cleaves the N–N bond of pyrazole and indazole cores to afford pyrimidines and quinazolines, respectively. This chlorodiazirine-mediated reaction provides a unified route to a related pair of heterocycles that are otherwise typically prepared by divergent approaches. Mechanistic experiments and DFT calculations support a pathway involving pyrazolium ylide fragmentation followed by cyclization of the ring-opened diazahexatriene intermediate to yield the new diazine core. Beyond enabling access to valuable heteroarenes from easily prepared starting materials, we demonstrate the synthetic utility of skeletal editing in the synthesis of a Rosuvastatin analog as well as in an aryl vector-adjusting direct scaffold hop

    Did increasing seasonality and fire frequency cause the c4 grassland transition in South America (SA)? Investigations from two paleosol sites in NW Argentina using δ13c isotopes, molecular biomarkers, phytoliths, and X-ray fluorescence (XRF)

    No full text
    Recent advances in molecular biomarkers along with traditional bulk δ13C isotopic analysis, phytolith assemblages, and XRF analysis allow for the detailed reconstruction of continental paleoecological and paleoclimatic conditions. We use these methods to reconstruct conditions during the expansion of C4 grasses, considered one of the most important biological events during the Cenozoic. We hypothesize that in SA, the spread of C4 grasses was driven by the intensification of the SA Summer Monsoon and that this increase in C4 vegetation caused an intensification of fire regimes, due to both seasonality fire and fireC4 expansion feedbacks, that has long been suspected but poorly documented and never studied in this context in SA. This study presents resultsfrom welldated paleosols from two sites in N.W. Argentina: La Viña (LV) and Palo Pintado (PP) in the Salta Province. The LV site includes the Jesus Maria Formations, Guanaco and Piquete (~15 4Ma), while the PP site includes the Palo Pintado Formation (~7.5 6 Ma). Previous studies have interpreted these sites as foreland basin sediments deposited in a meandering stream tolacustrine environment. Shifts in the δ13C obtained from bulk organic matter and phytolith assemblages in these paleosols are used to identify vegetation transitions from C3dominatedgrasslands and forests, to C4dominated grasslands. Leaf wax biomarkers include higher order nalkanes (C20 to C36), and are used to independently determine vegetation composition and changes to aridity and seasonality. XRF analysis is carried out to determine the chemical index of alteration in paleosols, which is a comparable proxy for precipitation seasonality. Polycyclic aromatic hydrocarbons (PAH) are used to determine fire regimes, in order to verify whether C4 expansion promoted fires. δ13C analysis of LV reveals a steady change from a C3dominatedecosystem at 15 Ma to a C3C4 intermediary ecosystem by 7.5 Ma. The PP site does not show any directional change in vegetation type during the investigated period between 7.2 Ma to 6 Ma, though δ13C values indicate a mixed C3C4 ecosystem throughout this period. However, results from the PP site show that increasing C4 cover, determined from bulk organic matter δ13C, is positively correlated with an increased fire frequency, determined from increasing PAH concentrations. Ultimately, these data contribute to constraining the causes of C4 expansion in NW Argentina, including the most important climatic controls and feedbacks from fire regimes, in continental SA.Fil: Ghosh, Adit. California State University; Estados UnidosFil: Cotton, Jennifer M.. California State University; Estados UnidosFil: Hyland, Ethan G.. North Carolina State University; Estados UnidosFil: Hauswirth, Scott C.. California State University; Estados UnidosFil: Raigemborn, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Tineo, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaThe Geological Society of America Connects 2021PasadenaEstados UnidosGeological Society of Americ

    A paleopedological approach to understanding Eocene environmental conditions in southern Patagonia, Argentina

    No full text
    The Eocene Las Flores and Koluel-Kaike formations in southern Patagonia (~48° S, Golfo San Jorge Basin, Argentina) are pedogenically modified fluvial and fluvio-eolian successions, respectively, which document early-middle Eocene environments at mid-paleolatitudes in the Southern Hemisphere. In order to reconstruct the paleoenvironment for the Las Flores and Koluel-Kaike formations, we performed a multiproxy and coordinated study of sediments and paleosols of both units, considering abiotic components. Using detailed sedimentology and paleopedology (macro- and micromorphology), bulk paleosol geochemistry and clay mineralogy, and organic carbon concentrations and stable isotope (δ13Corg) compositions, we show that the Las Flores and Koluel-Kaike paleosols are overall Ultisol-like paleosols, mineralogically and chemically consistent with a high to high-moderate degree of weathering, and developed on different parent materials (sedimentary with sandy and silty texture vs. silty volcaniclastic). Climate proxies and a comparison with modern Ultisols with similar features suggest that these paleosols formed under a broadly tropical-temperate and humid-subhumid climate with distinct seasonality. Overall, these combined data record long-term environmental conditions during the Paleogene (early-middle Eocene), and preserve a record of Eocene terrestrial climate in the Southern Hemisphere. This research is relevant for understanding latitudinal climatic gradients during warm periods like the Eocene, a key knowledge gap for future predictions, and these sites are particularly important because mid-latitude reconstructions in the Southern Hemisphere are the poorest resolved.Fil: Raigemborn, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Lizzoli, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Hyland, Ethan. North Carolina State University; Estados UnidosFil: Cotton, Jennifer. California State University; Estados UnidosFil: Gómez Peral, Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Beilinson, Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Krause, Javier Marcelo. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore