6 research outputs found

    Focused Ion Beam Microfabrication

    Get PDF
    Contains an introduction, reports on x research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Army Research Office Grant DAAL-03-92-G-0217National Science Foundation Grant ECS 89-21728Defense Advanced Research Projects Agency/U.S. Army Research Office (ASSERT Program) Grant DAAL03-92-G-0305Semiconductor Research CorporationNational Science Foundation Grant DMR 92-02633U.S. Army Research Office Grant DAAL03-90-G-0223U.S. Navy - Naval Research Laboratory/Micrion Contract M0877

    Focused Ion Beam Microfabrication

    Get PDF
    Contains an introduction, reports on seven research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Army Research Office Contract DAAL03-88-K-0108National Science Foundation Grant ECS 89-21728U.S. Army Research Office Contract DAAL03-87-K-0126U.S. Navy - Naval Research Laboratory/Micrion Agreement M08774SEMATEC

    In situ compressive loading and correlative noninvasive imaging of the bone-periodontal ligament-tooth fibrous joint.

    No full text
    This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics

    Accurate whole human genome sequencing using reversible terminator chemistry

    No full text
    DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications

    Accurate whole human genome sequencing using reversible terminator chemistry

    No full text
    corecore