34 research outputs found
Retinoic Acid Restores Adult Hippocampal Neurogenesis and Reverses Spatial Memory Deficit in Vitamin A Deprived Rats
A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function
Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis
Date of Acceptance: 27/08/2015 Funding was provided by the Wellcome Trust grant WT081633MA-NCE and Biological Sciences Research Council Grant BB/K001043/1. Prof Fragoso is the recipient of a Post Doctoral Science without Borders grant from the Brazilian National Council for Scientific and Technological Development (CNPq, 237450/2012-7).Peer reviewedPublisher PD
Knowing which and knowing what: a potential mouse model for age-related human declarative memory decline.
The present study was built on the original report of Eichenbaum et al. [Eichenbaum, H., Fagan, A., Mathews, P. and Cohen, N.J. (1988), Behav. Neurosci., 102, 3531-3542] on the contrasting effects of fornix lesion in different versions of an odour-guided discrimination task in rats, and attempted to extend this into a mouse model for the preferential loss of declarative memory seen in human senescence. Each of the two experiments reported here consisted of a two-stage paradigm, with an initial learning phase followed by a test phase. The information acquired in the first stage was identical in both experiments, i.e. the valence or reward contingency associated with six (three positive and three negative) arms of a radial maze. The only parameter which was varied between Experiment A and B, and also between the two successive stages within each experiment, was the way of presenting the arms to the mice, i.e. either in pairs (simultaneous discriminations) or one at a time (successive go : no-go discrimination). Performance in the first stage demonstrated that our aged mice were impaired in learning concurrent simultaneous discriminations but not successive go/no-go discrimination, thereby resembling that reported in rats with hippocampal damage. Most importantly, our present set of data supports the conclusion that two forms of memory expression for the same piece of acquired experience can be assessed in the same subjects by manipulating the way of presenting two arms that were previously experienced separately. These two forms of memory expressions are differentially affected in aged mice, thereby demonstrating the highly selective and specific deleterious effect of ageing