7 research outputs found

    Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    No full text
    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist

    Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    No full text
    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist

    Mathematical model for the power generation from arbitrarily oriented photovoltaic panel

    No full text
    In this paper, a mathematical model for modelling the solar radiation components and photovoltaic arrays power outputs from arbitrarily oriented photovoltaic panel has been presented. Base on the model electrical power prediction of the photovoltaic system in realistic local condition has been presented and compared with experimental measurement. The results show the effectiveness of the proposed model, which provides tools to better understand the performance and reliability as well as decision-making tool in designing of a hybrid renewable energy base power generation system. It has been shown that base on the model prediction, the efficiency and possible failures of the system can be found which are important from the technical and economical point of view

    Mathematical model for the power generation from arbitrarily oriented photovoltaic panel

    No full text
    In this paper, a mathematical model for modelling the solar radiation components and photovoltaic arrays power outputs from arbitrarily oriented photovoltaic panel has been presented. Base on the model electrical power prediction of the photovoltaic system in realistic local condition has been presented and compared with experimental measurement. The results show the effectiveness of the proposed model, which provides tools to better understand the performance and reliability as well as decision-making tool in designing of a hybrid renewable energy base power generation system. It has been shown that base on the model prediction, the efficiency and possible failures of the system can be found which are important from the technical and economical point of view

    Building solar cooling systems based on thermally driven chillers as an alternative approach to classic electrical cooling systems

    No full text
    Recently, the cooling market has witnessed a significant growth resulting in a considerable increase in the demand for electricity. Demand peaks during the hottest days and has become a serious problem in terms of power network stability. This can be seen during summer in Poland, where electricity demand over those few days, is greater than compared to winter. In general, the summer peak in electrical demand due to space cooling installations is a common problem in European countries. Fortunately, the high availability of solar energy is correlated with the cooling demands of buildings. A condition that creates an opportunity for the application of solar cooling systems. Thus, solar energy may reduce the consumption of power produced from conventional energy sources and at the same time reduce the peak of electrical energy demand. The available solar thermal collectors with sufficient and insufficient temperature output to drive the solar cooling process are presented. In the case of insufficient temperature output, auxiliary units have been considered. The absorption technology has been reviewed. Some simulation and experimental results of systems presented in literature are discussed in the paper. Finally, an example simulation of a hybrid solar system of heat generation, including flat plate collectors, a solar concentrator and an absorption chiller, is presented

    Research on high-temperature heat receiver in concentrated solar radiation system

    No full text
    The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC) method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD) simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system
    corecore