3 research outputs found

    Local IFNα enhances the anti-tumoral efficacy of systemic anti-PD1 to prevent tumor relapse

    No full text
    International audienceBackground Tumor relapse constitutes a major challenge for anti-tumoral treatments, including immunotherapies. Indeed, most cancer-related deaths occur during the tumor relapse phase. Methods We designed a mouse model of tumor relapse in which mice transplanted with E7 + TC1 tumor cells received a single therapeutic vaccination of STxB-E7+IFNα. Unlike the complete regression observed after two vaccinations, such a treatment induced a transient shrinkage of the tumor mass, followed by a rapid tumor outgrowth. To prevent this relapse, we tested the efficacy of a local administration of IFNα together with a systemic therapy with anti-PD1 Ab. The immune response was analyzed during both the tumor regression and relapse phases. Results We show that, during the regression phase, tumors of mice treated with a single vaccination of STxB-E7 + IFNα harbor fewer activated CD8 T cells and monocytes than tumors doomed to fully regress after two vaccinations. In contrast, the systemic injection of an anti-PD1 Ab combined with the peri-tumoral injection of IFNα in this time frame promotes infiltration of activated CD8 T cells and myeloid cells, which, together, exert a high cytotoxicity in vitro against TC1 cells. Moreover, the IFNα and anti-PD1 Ab combination was found to be more efficient than IFNα or anti-PD1 used alone in preventing tumor relapse and was better able to prolong mice survival. Conclusions Together, these results indicate that the local increase of IFNα in combination with an anti-PD1 therapy is an effective way to promote efficient and durable innate and adaptive immune responses preventing tumor relapse

    Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site

    No full text
    International audienceMost cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b + myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8 + T cells. Conversely, CD8 + T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8 + T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells
    corecore