74 research outputs found

    Lipid nanoparticles for alkyl lysophospholipid edelfosine encapsulation: development and in vitro characterization

    Get PDF
    The ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, edelfosine (ET-18-OCH3) is the prototype molecule of a promising class of antitumour drugs named alkyl–lysophospholipid analogues (ALPs) or antitumor ether lipids. This drug presents a very important drawback as can be the dose depending haemolysis when administered intravenously. Lipid nanoparticles have been lately proposed for different drug encapsulation as an alternative to other controlled release delivery systems, such as liposomes or polymeric nanoparticles. The aim of this study was to develop a lipid nanoparticulate system that would decrease systemic toxicity as well as improve the therapeutic potential of the drug. Lipids employed were Compritol® 888 ATO and stearic acid. The nanoparticles were characterized by photon correlation spectroscopy for size and size distribution, and atomic force microscopy (AFM) was used for the determination of morphological properties. By both differential scanning calorimetry (DSC) and X-ray diffractometry, crystalline behaviour of lipids and drug was assessed. The drug encapsulation efficiency and the drug release kinetics under in vitro conditions were measured by HPLC–MS. It was concluded that Compritol® presents advantages as a matrix material for the manufacture of the nanoparticles and for the controlled release of edelfosine

    Diagnostic and therapeutic uses of nanomaterials in the brain

    Get PDF
    Nanomedicine has recently emerged as an exciting tool able to improve the early diagnosis and treatment of a variety of intractable or age-related brain disorders. The most relevant properties of nanomaterials are that they can be engineered in such a way that they can cross the blood brain barrier, with the final aim of targeting specific cells and molecules and to act as vehicles for drugs. Potentially beneficial properties of nanotherapeutics derived from its unique characteristics include improved efficacy, safety, sensitivity and personalization compared to conventional medicines. In this review, recent advances in available nanostructures and nanomaterials for brain applications will be described. Then, the latest nanotechnological applications for the treatment and diagnosis of neurological disorders, mainly brain tumors and neurodegenerative diseases, will be reviewed. Recent investigations of the neurotoxicity of the nanomaterial both in vitro and in vivo will be summarized. Finally, the ongoing challenges that have to be meet if new nanomedical products are to be put on the market will be discussed and some future directions will be outlined

    Efficacy of edelfosine lipid nanoparticles in breast cancer cells

    Get PDF
    Breast cancer is a heterogeneous group of neoplasms predominantly originating in the terminal duct lobular units. It represents the leading cause of cancer death in women and the survival frequencies for patients at advanced stages of the disease remain low. New treatment options need to be researched to improve these rates. The anti-tumor ether lipid edelfosine (ET) is the prototype of a novel generation of promising anticancer drugs. However, it presents several drawbacks for its use in cancer therapy, including gastrointestinal and hemolytic toxicity and low oral bioavailability. To overcome these obstacles, ET was encapsulated in Precirol ATO 5 lipid nanoparticles (ET-LN), and its anti-tumor potential was in vitro tested in breast cancer. The formulated ET-LN were more effective in inhibiting cell proliferation and notably decreased cell viability, showing that the cytotoxic effect of ET was considerably enhanced when ET was encapsulated. In addition, ET and ET-LN were able to promote cell cycle arrest at G1 phase. Moreover, although both treatments provoked an apoptotic effect in a time-dependent manner, such anti-tumor effects were noticeably improved with ET-LN treatment. Therefore, our results indicate that encapsulating ET in LN played an essential role in improving the efficacy of the drug

    Ultra high performance liquid chromatography–tandem mass spectrometry method for cyclosporine a quantification in biological samples and lipid nanosystems

    Get PDF
    Cyclosporine A (CyA) is an immunosuppressant cyclic undecapeptide used for the prevention of organ transplant rejection and in the treatment of several autoimmune disorders. An ultra high performance liquid chromatography–tandem mass spectrometry method (UHPLC–MS/MS) to quantify CyA in lipid nanosystems and mouse biological matrices (whole blood, kidneys, lungs, spleen, liver, heart, brain, stomach and intestine) was developed and fully validated. Chromatographic separation was performed on an Acquity UPLC® BEH C18 column with a gradient elution consisting of methanol and 2 mM ammonium acetate aqueous solution containing 0.1% formic acid at a flow rate of 0.6 mL/min. Amiodarone was used as internal standard (IS). Retention times of IS and CyA were 0.69 min and 1.09 min, respectively. Mass spectrometer operated in electrospray ionization positive mode (ESI+) and multiple reaction monitoring (MRM) transitions were detected, m/z 1220.69 → 1203.7 for CyA and m/z 646 → 58 for IS. The extraction method from biological samples consisted of a simple protein precipitation with 10% trichloroacetic acid aqueous solution and acetonitrile and 5 μL of supernatant were directly injected into the UHPLC–MS/MS system. Linearity was observed between 0.001 μg/mL–2.5 μg/mL (r ≥ 0.99) in all matrices. The precision expressed in coefficient of variation (CV) was below 11.44% and accuracy in bias ranged from −12.78% to 7.99% including methanol and biological matrices. Recovery in all cases was above 70.54% and some matrix effect was observed. CyA was found to be stable in post-extraction whole blood and liver homogenate samples exposed for 6 h at room temperature and 72 h at 4 °C. The present method was successfully applied for quality control of lipid nanocarriers as well as in vivo studies in BALB/c mice

    Complete inhibition of extranodal dissemination of lymphoma by edelfosine-loaded lipid nanoparticles

    Get PDF
    Lipid nanoparticles (LN) made of synthetic lipids Compritol® 888 ATO and Precirol® ATO 5 were developed, presenting an average size of 110.4 ± 2.1 nm and 103.1 ± 2.9 nm, for Compritol® and Precirol®, respectively, and encapsulation efficiency above 85 % for both type of lipids. These LN decrease the hemolytic toxicity of the drug by 90 %. Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LN, providing an increase in relative oral bioavailability of 1500 % after a single oral administration of drug-loaded LN, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presents a relative oral bioavailability of 10 %. Moreover, edelfosine-loaded LN showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition

    Edelfosine lipid nanosystems overcome drug resistance in leukemic cell lines

    Get PDF
    Although current therapies have improved leukemia survival rates, adverse drug effects and relapse are frequent. Encapsulation of edelfosine (ET) in lipid nanoparticles (LN) improves its oral bioavailability and decreases its toxicity. Here we evaluated the efficacy of ET-LN in myeloid leukemia cell lines. Drug-loaded LN were as effective as free ET in sensitive leukemia cell lines. Moreover, the encapsulated drug overcame the resistance of the K562 cell line to the drug. LN containing ET might be used as a promising drug delivery system in leukemia due to their capacity to overcome the in vivo pitfalls of the free drug and their efficacy in vitro in leukemia cell lines

    Lipid nanoparticles for cancer therapy: state of the art and future prospects

    Get PDF
    Introduction: Cancer is a leading cause of death worldwide and it is estimated that deaths from this disease will rise to over 11 million in 2030. Most cases of cancer can be cured with surgery, radiotherapy or chemotherapy if they are detected at an early stage. However, current cancer therapies are commonly associated with undesirable side effects, as most chemotherapy treatments are cytotoxic and present poor tumor targeting. Areas covered: Lipid nanoparticles (LN) are one of the most promising options in this field. LN are made up of biodegradable generally recognized as safe (GRAS) lipids, their formulation includes different techniques, and most are easily scalable to industrial manufacture. LN overcome the limitations imposed by the need for intravenous administration, as they are mainly absorbed via the lymphatic system when they are administered orally, which improves drug bioavailability. Furthermore, depending on their composition, LN present the ability to cross the blood-brain barrier, thus opening up the possibility of targeting brain tumors. Expert opinion: The drawbacks of chemotherapeutic agents make it necessary to invest in research to find safer and more effective therapies. Nanotechnology has opened the door to new therapeutic options through the design of formulations that include a wide range of materials and formulations at the nanometer range, which improve drug efficacy through direct or indirect tumor targeting, increased bioavailability and diminished toxicity

    Nanosistemas a base de poliésteres

    Get PDF
    Amplia presentacion de los: Nanosistemas a base de poliésteres, desarrollando todas las posibilidades de estos compuestos que constituyen tal vez los polímeros mas frecuentemente utilizados por estar, algunos de ellos, autorizado su empleo por las agen- cias regulatorias
    corecore