19 research outputs found

    Theoretical groundwork supporting the precessing-spin two-body dynamics of the effective-one-body waveform models SEOBNRv5

    Full text link
    Waveform models are essential for gravitational-wave (GW) detection and parameter estimation of coalescing compact-object binaries. More accurate models are required for the increasing sensitivity of current and future GW detectors. The effective-one-body (EOB) formalism combines the post-Newtonian (PN) and small mass-ratio approximations with numerical-relativity results, and produces highly accurate inspiral-merger-ringdown waveforms. In this paper, we derive the analytical precessing-spin two-body dynamics for the \texttt{SEOBNRv5} waveform model, which has been developed for the upcoming LIGO-Virgo-KAGRA observing run. We obtain an EOB Hamiltonian that reduces to the exact Kerr Hamiltonian in the test-mass limit. It includes the full 4PN precessing-spin information, and is valid for generic compact objects (i.e., for black holes or neutron stars). We also build an efficient and accurate EOB Hamiltonian that includes partial precessional effects, notably orbit-averaged in-plane spin effects for circular orbits, and derive 4PN-expanded precessing-spin equations of motion, consistent with such an EOB Hamiltonian. The results were used to build the computationally-efficient precessing-spin multipolar \texttt{SEOBNRv5PHM} waveform model.Comment: 35 page

    SEOBNRv5PHM: Next generation of accurate and efficient multipolar precessing-spin effective-one-body waveforms for binary black holes

    Full text link
    Spin precession is one of the key physical effects that could unveil the origin of the compact binaries detected by ground- and space-based gravitational-wave (GW) detectors, and shed light on their possible formation channels. Efficiently and accurately modeling the GW signals emitted by these systems is crucial to extract their properties. Here, we present SEOBNRv5PHM, a multipolar precessing-spin waveform model within the effective-one-body (EOB) formalism for the full signal (i.e. inspiral, merger and ringdown) of binary black holes (BBHs). In the non-precessing limit, the model reduces to SEOBNRv5HM, which is calibrated to 442442 numerical-relativity (NR) simulations, 13 waveforms from BH perturbation theory, and non-spinning energy flux from second-order gravitational self-force theory. We remark that SEOBNRv5PHM is not calibrated to precessing-spin NR waveforms from the Simulating eXtreme Spacetimes Collaboration. We validate SEOBNRv5PHM by computing the unfaithfulness against 1543 precessing-spin NR waveforms, and find that for 99.8% (84.4%) of the cases, the maximum value, in the total mass range 20-300 M⊙M_\odot, is below 3% (1%). These numbers reduce to 95.3% (60.8%) when using the previous version of the SEOBNR family, SEOBNRv4PHM, and to 78.2% (38.3%) when using the state-of-the-art frequency-domain multipolar precessing-spin phenomenological IMRPhenomXPHM model. Due to much better computational efficiency of SEOBNRv5PHM compared to SEOBNRv4PHM, we are also able to perform extensive Bayesian parameter estimation on synthetic signals and GW events observed by LIGO-Virgo detectors. We show that SEOBNRv5PHM can be used as a standard tool for inference analyses to extract astrophysical and cosmological information of large catalogues of BBHs

    IMRPhenomXHM: A multi-mode frequency-domain model for the gravitational wave signal from non-precessing black-hole binaries

    Full text link
    We present the IMRPhenomXHM frequency domain phenomenological waveform model for the inspiral, merger and ringdown of quasi-circular non-precessing black hole binaries. The model extends the IMRPhenomXAS waveform model, which describes the dominant quadrupole modes ℓ=∣m∣=2\ell = |m| = 2, to the harmonics (ℓ,∣m∣)=(2,1),(3,3),(3,2),(4,4)(\ell, |m|)=(2,1), (3,3), (3,2), (4,4), and includes mode mixing effects for the (3,2)(3,2) spherical harmonic. IMRPhenomXHM is calibrated against hybrid waveforms, which match an inspiral phase described by the effective-one-body model and post-Newtonian amplitudes for the subdominant harmonics to numerical relativity waveforms and numerical solutions to the perturbative Teukolsky equation for large mass ratios up to 1000. A computationally efficient implementation of the model is available as part of the LSC Algorithm Library Suite.Comment: 30 pages, 23 figures. Updated to match published versio

    Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes

    Full text link
    We present SEOBNRv5HM, a more accurate and faster inspiral-merger-ringdown gravitational waveform model for quasi-circular, spinning, nonprecessing binary black holes within the effective-one-body (EOB) formalism. Compared to its predecessor, SEOBNRv4HM, the waveform model i) incorporates recent high-order post- Newtonian results in the inspiral, with improved resummations, ii) includes the gravitational modes (l, |m|) = (3, 2), (4, 3), in addition to the (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) modes already implemented in SEOBNRv4HM, iii) is calibrated to larger mass-ratios and spins using a catalog of 442 numerical-relativity (NR) simulations and 13 additional waveforms from black-hole perturbation theory, iv) incorporates information from second-order gravitational self-force (2GSF) in the nonspinning modes and radiation-reaction force. Computing the unfaithfulness against NR simulations, we find that for the dominant (2, 2) mode the maximum unfaithfulness in the total mass range 10−300M⊙10-300 M_{\odot} is below 10−310^{-3} for 90% of the cases (38% for SEOBNRv4HM). When including all modes up to l = 5 we find 98% (49%) of the cases with unfaithfulness below 10−2(10−3)10^{-2} (10^{-3}), while these numbers reduce to 88% (5%) when using SEOBNRv4HM. Furthermore, the model shows improved agreement with NR in other dynamical quantities (e.g., the angular momentum flux and binding energy), providing a powerful check of its physical robustness. We implemented the waveform model in a high-performance Python package (pySEOBNR), which leads to evaluation times faster than SEOBNRv4HM by a factor 10 to 50, depending on the configuration, and provides the flexibility to easily include spin-precession and eccentric effects, thus making it the starting point for a new generation of EOBNR waveform models (SEOBNRv5) to be employed for upcoming observing runs of the LIGO-Virgo-KAGRA detectors

    Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants

    Get PDF
    R. Abbott et al.We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20–976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as ∼6.3×10−26 for Cas A and ∼5.6×10−26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom,the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction o Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development,India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitati Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciencia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitatd e Catalunya,Spain,the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP),the Swiss National Science Foundation(SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds(ESF),the European Regional Development Funds(ERDF),the Royal Society,the Scottish Funding Council,the Scottish Universities Physics Alliance,the Hungarian ScientificResearch Fund (OTKA),the French Lyon Institute of Origins (LIO),the Belgian Fonds de la Recherche Scientifique (FRS-FNRS),Actions de Recherche Concertees(ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO),Belgium,the ParisÎle-de-France Region,the National Research, Development and Innovation Office Hungary (NKFIH),the National Research Foundation of Korea,the Natural Science and Engineering Research Council Canada,Canadian Foundation for Innovation (CFI),the Brazilian Ministr of Science,Technology, and Innovations,the International Center for Theoretical Physics South American Institute for Fundamental Research(ICTP-SAIFR), the Research Grants Councilof Hong Kong,the National Natural Science Foundation of China(NSFC),the LeverhulmeTrust,the Research Corporation,the Ministry of Science and Technology (MOST),Taiwan, the United States Departmentof Energy, and the Kavli Foundation.The authors gratefully acknowledge thes upport of theNSF,STFC,INFN and CNRSf or provision of computational resources.Peer reviewe

    Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

    Get PDF
    LIGO Scientific Collaboration - Virgo Collaboration - KAGRA Collaboration: Abbott, R. et al.We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo’s third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between mA∼10−14–10−11 eV/c2, which corresponds to frequencies between 10–2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e., U(1)B dark matter. For the cross-correlation method, the best median constraint on the squared coupling is ∼1.31×10−47 at mA∼4.2×10−13eV/c2; for the other analysis, the best constraint is ∼2.4×10−47 at mA∼5.7×10−13eV/c2. These limits improve upon those obtained in direct dark matter detection experiments by a factor of ∼100 for mA∼[2–4]×10−13eV/c2, and are, in absolute terms, the most stringent constraint so far in a large mass range mA∼2×10−13–8×10−12eV/c2.This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/ Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support fromthese agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidencia i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciencia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert´ees (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTPSAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: No. JP17H06358, No. JP17H06361 and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) No. 17H06133, the joint research program of the Institute forCosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.Peer reviewe
    corecore