22 research outputs found

    An exonic switch regulates differential accession of microRNAs to the Cd34 transcript in aterosclerosis progression

    Get PDF
    Background: CD34+ Endothelial Progenitor Cells (EPCs) play an important role in the recovery of injured endothelium and contribute to atherosclerosis (ATH) pathogenesis. Previously we described a potential atherogenic role for miR-125 that we aimed to confirm in this work. Methods: Microarray hybridization, TaqMan Low Density Array (TLDA) cards, qPCR, and immunohistochemistry (IHC) were used to analyze expression of the miRNAs, proteins and transcripts here studied. Results: Here we have demonstrated an increase of resident CD34-positive cells in the aortic tissue of human and mice during ATH progression, as well as the presence of clusters of CD34-positive cells in the intima and adventitia of human ATH aortas. We introduce miR-351, which share the seed sequence with miR-125, as a potential effector of CD34. We show a splicing event at an internal/cryptic splice site at exon 8 of the murine Cd34 gene (exonic-switch) that would regulate the differential accession of miRNAs (including miR-125) to the coding region or to the 3'UTR of Cd34. Conclusions: We introduce new potential mediators of ATH progression (CD34 cell-clusters, miR-351), and propose a new mechanism of miRNA action, linked to a cryptic splicing site in the target-host gene, that would regulate the differential accession of miRNAs to their cognate binding sites

    ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease

    Full text link
    Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance

    Unveiling ncRNA regulatory axes in atherosclerosis progression

    Get PDF
    Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks

    Impact of diet on cardiometabolic health in children and adolescents

    Get PDF
    The manifestation of cardiovascular risk factors, such as hypertension, diabetes, and particularly obesity begins in children and adolescents, with deleterious effects for cardiometabolic health at adulthood. Although the impact of diet on cardiovascular risk factors has been studied extensively in adults, showing that their cardiometabolic health is strongly lifestyle-dependent, less is known about this impact in children and adolescents. In particular, little is known about the relationship between their dietary patterns, especially when derived a posteriori, and cardiovascular risk. An adverse association of cardiovascular health and increased intake of sodium, saturated fat, meat, fast food and soft drinks has been reported in this population. In contrast, vitamin D, fiber, mono-and poly-unsaturated fatty acids, dairy, fruits and vegetables were positively linked to cardiovascular health. The aim of this review was to summarize current epidemiological and experimental evidence on the impact of nutrients, foods, and dietary pattern on cardiometabolic health in children and adolescents. A comprehensive review of the literature available in English and related to diet and cardiometabolic health in this population was undertaken via the electronic databases PubMed, Cochrane Library, and Medline

    Chronic Kidney Disease is associated with an increase of Intimal Dendritic cells in a comparative autopsy study

    Get PDF
    Background: Chronic Kidney Disease (CKD) and inflammation are risk factors for atherosclerotic vascular disease (ASVD). In inflammatory conditions, Nuclear Factor-kappa B (NF-kappa B) is frequently activated and it has been detected in human ASVD. In this work, we investigated if the degree of inflammation and of NF-kappa B activation were increased in the aorta of patients with CKD. Methods: This is a case-control pilot study performed on 30 abdominal aorta samples from 10 human autopsies. Cases were patients with CKD and controls patients with normal glomerular filtration rate (eGFR). Infiltrating mononuclear cells (S100(+), CD3(+), CD40(+), CD40L(+)) and activation of NF-kappa B were identified by immunohistochemistry. Findings: The number of cells in the intima which showed activated nuclear NF-.B correlated with severity of ASVD lesions (r = 0.56, p = 0.003), with numbers of CD3(+) lymphocytes in adventitia (r = 0.50, p = 0.008), with numbers of CD40(+) cells in the intima (r = 0.59, p = 0.002) or in the adventitia (r = 0.45, p = 0.02), and with numbers of CD40L(+) cells in the intima (r = 0.51, p = 0.011). Increased numbers of S100(+) Intimal Dendritic cells (IDCs) were associated with ASVD (p = 0.03) and CKD (p = 0.01). Conclusions: Number of CD3(+) cells, of CD40(+) cells, of CD40L(+) cells and the degree of NF-kappa B activation were increased in ASVD lesions suggesting a role for the adaptive T cell in the development of ASVD lesions. IDCs were associated both with ASVD and CKD suggesting a role of these cells in the pathogenesis of ASVD in CKD

    The double edge of anti-CD40 siRNA therapy: It increases renal microcapillar density but favours the generation of an inflammatory milieu in the kidneys of ApoE -/- mice

    Get PDF
    Background: Chronic kidney disease (CKD) is associated with endothelial dysfunctions thus prompting links between microcirculation (MC), inflammation and major cardiovascular risk factors. Purpose of the study: We have previously reported that siRNA-silencing of CD40 (siCD40) reduced atherosclerosis (ATH) progression. Here, we have deepened on the effects of the siCD40 treatment by evaluating retrospectively, in stored kidneys from the siCD40 treated ApoE−/− mice, the renal microcirculation (measured as the density of peritubular capillaries), macrophage infiltration and NF-κB activation. Methods: Kidneys were isolated after 16 weeks of treatment with the anti-CD40 siRNA (siCD40), with a scrambled control siRNA (siSC) or with PBS (Veh. group). Renal endothelium, infiltrating macrophages and activated NF-κB in endothelium were identified by immunohistochemistry, while the density of stained peritubular capillaries was quantified by image analysis. Results: ATH was associated with a reduction in renal MC, an effect reversed by the anti-CD40 siRNA treatment (3.8 ± 2.7% in siCD40; vs. 1.8 ± 0.1% in siSC; or 1.9 ± 1.6% in Veh.; p < 0.0001). Furthermore, siCD40 treatment reduced the number of infiltrating macrophages compared to the SC group (14.1 ± 5.9 cells/field in siCD40; vs. 37.1 ± 17.8 cells/field in siSC; and 1.3 ± 1.7 cells/field in Veh.; p = 0.001). NF-κB activation also peaked in the siSC group, showing lower levels in the siCD40 and Veh. groups (63 ± 60 positive cells/section in siCD40; vs. 152 ± 44 positive cells/ section in siSC; or 26 ± 29 positive cells/section in veh.; p = 0.014). Lastly, serum creatinine was also increased in the siCD40 (3.4 ± 3.3 mg/dL) and siSC (4.6 ± 3.0 mg/dL) groups when compared with Veh. (1.1 ± 0.9 mg/dL, p = 0.1). Conclusions: Anti-CD40 siRNA therapy significantly increased the density of peritubular capillaries and decreased renal inflammation in the ATH model. These data provide a physiological basis for the development of renal diseases in patients with ATH. Furthermore, our results also highligth renal off-target effects of the siRNA treatment which are discussed

    Integrated miRNA/mRNA Counter-Expression Analysis Highlights Oxidative Stress-Related Genes CCR7 and FOXO1 as Blood Markers of Coronary Arterial Disease

    Get PDF
    Our interest in the mechanisms of atherosclerosis progression (ATHp) has led to the recent identification of 13 miRNAs and 1285 mRNAs whose expression was altered during ATHp. Here, we deepen the functional relationship among these 13 miRNAs and genes associated to oxidative stress, a crucial step in the onset and progression of vascular disease. We first compiled a list of genes associated to the response to oxidative stress (Oxstress genes) by performing a reverse Gene Ontology analysis (rGO, from the GO terms to the genes) with the GO terms GO0006979, GO1902882, GO1902883 and GO1902884, which included a total of 417 unique Oxstress genes. Next, we identified 108 putative targets of the 13 miRNAs among these unique Oxstress genes, which were validated by an integrated miRNA/mRNA counter-expression analysis with the 1285 mRNAs that yielded 14 genes, Map2k1, Mapk1, Mapk9, Dapk1, Atp2a2, Gata4, Fos, Egfr, Foxo1, Ccr7, Vkorc1l1, Rnf7, Kcnh3, and Mgat3. GO enrichment analysis and a protein–protein-interaction network analysis (PPI) identified most of the validated Oxstress transcripts as components of signaling pathways, highlighting a role for MAP signaling in ATHp. Lastly, expression of these Oxstress transcripts was measured in PBMCs from patients suffering severe coronary artery disease, a serious consequence of ATHp. This allowed the identification of FOXO1 and CCR7 as blood markers downregulated in CAD. These results are discussed in the context of the interaction of the Oxstress transcripts with the ATHp-associated miRNAs

    Chronic kidney disease-associated inflammation increases in risks of acute kidney injury and mortality after cardíac surgery

    Get PDF
    Cardiovascular mortality increases with decreasing renal function although the cause is yet unknown. Here, we have investigated whether low chronic inflammation in chronic kidney diseases (CKD) could contribute to increased risk for coronary artery diseases (CAD). Thus, a prospective case-control study was conducted in patients with CAD and CKD undergoing coronary artery bypass graft surgery with the aim of detecting differences in cardiovascular outcomes, epicardial adipose tissue volume, and inflammatory marker activity associated with renal dysfunction. Expression of membrane CD14 and CD16, inflammatory cytokines and chemokines, mitogen-activated protein (MAP) kinases and hsa-miR-30a-5p were analyzed in peripheral blood mononuclear cells (PBMCs). Epicardial fat volume and tissue inflammation in perivascular adipose tissue and in the aorta were also studied. In the present study, 151 patients were included, 110 with CAD (51 with CKD) and 41 nonCAD controls (15 with CKD). CKD increased the risk of cardiac surgery-associated acute kidney injury (CSA-AKI) as well as the 30-day mortality after cardiac surgery. Higher counts of CD14++CD16+ monocytes were associated with vascular inflammation, with an increased expression of IL1β, and with CKD in CAD patients. Expression of hsa-miR-30a-5p was correlated with hypertension. We conclude that CKD patients show an increased risk of CSA-AKI and mortality after cardiovascular surgery, associated with the expansion of the CD14++CD16+ subset of proinflammatory monocytes and with IL1β expression. We propose that inflammation associated with CKD may contribute to atherosclerosis (ATH) pathogenesis

    MiR-125b downregulates macrophage scavenger receptor type B1 and reverse cholesterol transport

    Get PDF
    Objective: To determine whether miR-125b regulates cholesterol efflux in vivo and in vitro through the regulation of scavenger receptor type B1 (SR-B1). Approach and results: We demonstrated that miR-125b is up-regulated in the human aortas of patients with CAD and is located in macrophages and vascular smooth muscle cells (VSMCs). We identified SCARB1 as a direct target of miR-125b by repressing the activity of the SCARB1 3'-untranslated region reporter construct. Moreover, the overexpression of miR-125b in both human and mouse macrophages as well as VSMCs was found to downregulated the expression of the SCARB1 and the SR-B1 protein levels, thereby impairing alpha-HDL-mediated macrophage cholesterol efflux in vitro. The in vivo reverse cholesterol transport (RCT) rate from non-cholesterol-loaded macrophages transfected with miR-125b to feces was also found to be decreased when compared with that of control mimic-transfected macrophages. Conclusions: Together, these results provide evidence that miR-125b downregulates SCARB1 and SR-B1 in both human and mouse macrophages as well as VSMCs, thereby impairing macrophage cholesterol efflux in vitro and the whole macrophage-specific RCT pathway in vivo

    Data on genotypic distribution and linkage disequilibrium of several ANRIL polymorphisms in hemodialysis patients

    Get PDF
    A long non-coding RNA called ANRIL located on chromosome 9p21.3 has been identified as a novel genetic factor associated with cardiovascular disease. Investigation of several single nucleotide polymorphisms (SNPs) of Noncoding Antisense RNA in the INK4 Locus (ANRIL) gene are of particular interest. This article reports data related to the research article entitled: "Association of ANRIL gene polymorphisms with major adverse cardiovascular events in hemodialysis patients" (Arbiol-Roca et al. [1]). Data presented show the genotypic distribution of four selected ANRIL SNPs: rs10757278, rs4977574, rs10757274 and rs6475606 in a cohort constituted by 284 hemodialysis patients. This article analyzes the Hardy-Weinberg disequilibrium of each studied SNP, and the linkage disequilibrium between them
    corecore