2 research outputs found

    Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits

    Get PDF
    The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated ‘Navelate’ (Citrus sinensis L. Osbeck) oranges were studied in parallel with changes in ethylene production, respiration and peel damage. The effects of compounds modifying the levels of the ethylene co-product cyanide and nitric oxide (NO) on fruit physiology were also studied. Results suggested that: 1) The ethylene treatment caused sub-lethal stress since it induced stress-related responses and reduced peel damage; 2) 1-MCP induced ethylenedependent and ethylene-independent responsive networks; 3) 1-MCP triggered ethylene overproduction, stress-related responses and metabolic shifts aimed to cope with cell toxicity, which mostly affected to the inner part of the peel (albedo); 4) 1-MCP increased respiration and drove metabolism reconfiguration for favoring energy conservation but up-regulated genes related to lipid and protein degradation and triggered the over-expression of genes associated with the plasma membrane cellular component; 5) Xenobiotics and/or reactive oxygen species (ROS) might act as signals for defense responses in the ethylene-treated fruit, while their uncontrolled generation would induce processes mimicking cell death and damage in 1-MCP-treated fruit; 6) ROS, the ethylene co-product cyanide and NO may converge in the toxic effects of 1-MCP.This work was supported by the Spanish Ministry of Science and Technology (Research Grants AGL2002-1727 and AGL2009-11969 and by the Generalitat Valenciana, Spain (Grant PROMETEOII/2014/027). Dr. B. E. was the recipient of a fellowship of the Spanish Ministry of Science and Technology. Dr. A.R.B. is grateful to CSIC and the European Social Fund for her postdoctoral JAE-Doc contract.Peer reviewe

    Insights into the regulation of molecular mechanisms involved in energy shortage in detached citrus fruit

    No full text
    Harvested fruit undergo carbon and energy deprivation. However, the events underlying this energy-related stress in detached fruit and their involvement in cell damage have not yet been elucidated. We showed that supplementing detached sweet oranges with additional carbon or energy sources reduced peel damage, while inhibitors of energy metabolism increased it. We investigated the effect of an exogenous source of carbon (glycerol), energy (ATP), and an inhibitor of energy metabolism 2-deoxy-D-glucose (DeOGlc) + sodium iodoacetate (IAc), on the transcriptome of harvested fruit flavedo (outer peel part). ATP and Gly induced common, but also specific, alternative modes of energy metabolism by reducing the stress caused by energy shortage. They also induced shifts in energy metabolism that led to the production of the intermediates required for plant defense secondary metabolites to form. ATP and Gly triggered changes in the expression of the genes involved in cell lesion containment through a defined pathway involving hormones and redox-mediated signaling. DeOGlc + IAc had a contrasting effect on some of these mechanisms. These chemicals altered the biological processes related to membrane integrity and molecular mechanisms involving reactive oxygen species (ROS) production, and lipid and protein degradation.This work was supported by the Spanish Ministry of Economy and Competitiveness, Spain (Research Grant AGL2009–11969-R) and the Generalitat Valenciana, Spain (Grant PROMETEOII/2014/027). The Ramón y Cajal Contract (Spanish Government and Fondo Social Europeo) to Dr. F. Alférez is also acknowledged.Peer reviewe
    corecore