19 research outputs found

    Lagrangian dispersion and deformation in submesoscale flows

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.Submesoscale currents, with horizontal length scales of 1-20 km, are an important element of upper ocean dynamics. These currents play a crucial role in the horizontal and vertical redistribution of tracers, the cascade of tracer variance to smaller scales, and in linking the mesoscale circulation with the dissipative scales. This thesis investigates submesoscale flows and their properties using Lagrangian trajectories of observed and modeled drifters. We analyze statistics of observed drifter pairs to characterize turbulent dispersion at submeso-scales. Contrary to theoretical expectations, we find that nonlocal velocity gradients associated with mesoscale eddies dominate the separation of drifters even at the kilometer scale. At submeso-scales, we observe energetic motions, such as near-inertial oscillations, that contribute to the energy spectrum but are inefficient at dispersion. Using trajectories in a model of submesoscale turbulence, we find that, if drifters have a vertical separation, vertical shear dominates the dispersion and conceals horizontal dispersion regimes from drifter observations. Particularly in submesoscale flows, vertical shear is orders of magnitude larger than horizontal gradients in velocity. Since conventional drifters in the ocean are not affected by vertical shear, it is likely that drifter-derived diffusivity underestimates the diffusivity that a tracer would experience. Lastly, we test and apply cluster-based methods, using three or more drifters, to estimate the velocity gradient tensor. Since velocity gradients become large at submesoscales, the divergence, strain, and vorticity control the evolution and deformation of clusters of drifters. Observing the velocity gradients using drifters, enables us to further constrain the governing dynamics and decipher submesoscale motions from inertia-gravity waves. These insights provide a Lagrangian perspective on submesoscale flows that illuminates scales that are challenging to observe from other platforms. We reveal observational and theoretical challenges that need to be overcome in future investigations.My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-I434788) and the Office of Naval Research (N00014-13-1-0451, Grant N00014-16-1-2470)

    Can we detect submesoscale motions in drifter pair dispersion?

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu)

    Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the Waning 2015 Southwest Monsoon

    Get PDF
    Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 124–133, doi:10.5670/oceanog.2016.45.A dedicated drifter experiment was conducted in the northern Bay of Bengal during the 2015 waning southwest monsoon. To sample a variety of spatiotemporal scales, a total of 36 salinity drifters and 10 standard drifters were deployed in a tight array across a freshwater front. The salinity drifters carried for the first time a revised sensor algorithm, and its performance during the 2015 field experiment is very encouraging for future efforts. Most of the drifters were quickly entrained in a mesoscale feature centered at about 16.5°N, 89°E and stayed close together during the first month of observations. While the eddy was associated with rather homogeneous temperature and salinity characteristics, much larger variability was found outside of it toward the coastline, and some of the observed salinity patches had amplitudes in excess of 1.5 psu. To particularly quantify the smaller spatiotemporal scales, an autocorrelation analysis of the drifter salinities for the first two deployment days was performed, indicating not only spatial scales of less than 5 km but also temporal variations of the order of a few hours. The hydrographic measurements were complemented by first estimates of kinematic properties from the drifter clusters, however, more work is needed to link the different observed characteristics.VH and LR were supported by ONR grant N00014- 13-1-0477 and NOAA GDP grant NA10OAR4320156. AM and SE were funded by ONR grant N00014‑13-1- 0451, and ED by ONR grant N00014-14-1-0235. BPK acknowledges financial support from the Ministry of Earth Sciences (MoES, Government of India)

    Spatial and temporal variations of Levantine Intermediate Water : with special focus on the M84/3 and POS414 cruises

    No full text
    The Levantine Intermediate Water (LIW) is a main contributor to the circulation system of the Mediterranean Sea. Climatological analyses of a historical data base have been carried out to resolve spatial and temporal variations of LIW. On seven horizontal boxes, corresponding to broad regions relevant to the LIW flow, seasonally and spatially averaged time series with a maximum length of 100 years have been produced. Spatially, the results reveal a continuous decline of salinity and temperature of the LIW layer from its formation site toward the Atlantic. A trend analysis over the period from 1945 to 2000 yields an increase in salinity in all observed boxes with an amplitude of 2.5 · 10-3 psu/year and a warming of the LIW layer in the Western Mediterranean basin. It is found that the most important mixing regions are the approaches to the Straits of Sicily and Gibraltar and the Gulf of Lion, where deep water formation occurs. An analysis of the data from the recent cruise METEOR M84/3 (2011) confirm the found spatial variability. The method used in this work is useful to depict the basic variations of the LIW properties in the Mediterranean basins. Due to the large heterogeneity of the data, however, large uncertainties in the trend determinantion cannot be excluded

    Data supporting "Near-inertial wave interactions and turbulence production in a Kuroshio anticyclonic eddy"

    No full text
    This is EM-APEX float data collected in 2016 supporting the research article "Near-inertial wave interactions and turbulence production in a Kuroshio anticyclonic eddy" to be submitted to Journal of Physical Oceanography. Authors: Essink S, E Kunze, RC Lien, R Inoue, S ItoThis dataset was collected through NSF grant OCE-1459173

    Data supporting "Storm-driven near-inertial waves and mixing"

    No full text
    This dataset contains processed profile timeseries of EM-APEX floats collected during fall/winter seasons of 2016 and 2017 in the Kuroshio-Oyashio Confluence east of Japan. Floats measured temperature, salinity, pressure, velocity and temperature microstructure.Near-inertial waves are one of three major sources of deep-ocean mixing. Little is known about their energy pathways beyond their wind generation and that only 15-25% of the wind-forced near-inertial wave energy radiates equatorward as low modes. They contain half the kinetic energy and most of the vertical shear in the ocean. O(1 TW) inertial wind power is injected by a few dozen mid- latitude fall and winter storms. While numerical and observational evidence points to the bulk of the inertial wind power being lost in the near-field of storm forcing, dissipating and mixing immediately below the surface layer, there has been little observational work to investigate this major piece of the inertial energy budget in detail. As well as determining the fate of wind-forced near-inertial waves, the proposed work will quantify the climatologically-important depth dependence of turbulent mixing in the pycnocline.National Science Foundatio

    Lagrangian dispersion and deformation in submesoscale flows

    No full text
    Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019Cataloged from PDF version of thesis. "The pagination in this thesis reflects how it was delivered to the Institute Archives and Special Collections. TOC pagination for Bibliography section is off by one page"--Disclaimer Notice page.Includes bibliographical references (pages 115-123).Submesoscale currents, with horizontal length scales of 1-20 km, are an important element of upper ocean dynamics. These currents play a crucial role in the horizontal and vertical redistribution of tracers, the cascade of tracer variance to smaller scales, and in linking the mesoscale circulation with the dissipative scales. This thesis investigates submesoscale flows and their properties using Lagrangian trajectories of observed and modeled drifters. We analyze statistics of observed drifter pairs to characterize turbulent dispersion at submeso-scales. Contrary to theoretical expectations, we find that nonlocal velocity gradients associated with mesoscale eddies dominate the separation of drifters even at the kilometer scale. At submeso-scales, we observe energetic motions, such as near-inertial oscillations, that contribute to the energy spectrum but are inefficient at dispersion.Using trajectories in a model of submesoscale turbulence, we find that, if drifters have a vertical separation, vertical shear dominates the dispersion and conceals horizontal dispersion regimes from drifter observations. Particularly in submesoscale flows, vertical shear is orders of magnitude larger than horizontal gradients in velocity. Since conventional drifters in the ocean are not affected by vertical shear, it is likely that drifter-derived diffusivity underestimates the diffusivity that a tracer would experience. Lastly, we test and apply cluster-based methods, using three or more drifters, to estimate the velocity gradient tensor. Since velocity gradients become large at submesoscales, the divergence, strain, and vorticity control the evolution and deformation of clusters of drifters. Observing the velocity gradients using drifters, enables us to further constrain the governing dynamics and decipher submesoscale motions from inertia-gravity waves.These insights provide a Lagrangian perspective on submesoscale flows that illuminates scales that are challenging to observe from other platforms. We reveal observational and theoretical challenges that need to be overcome in future investigations."Funded by the National Science Foundation (OCE-I434788) and the Office of Naval Research (N00014-13-1-0451, Grant N00014-16-1-2470)"--Page 5by Sebastian Essink.Ph. D.Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution

    On characterizing ocean kinematics from surface drifters

    No full text
    Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(8), (2022): 1183-1198, https://doi.org/10.1175/jtech-d-21-0068.1.Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative ASIRI under Grant N00014-13-1-0451 (SE and AM) and Grant N00014-13-1-0477 (VH and LC). The authors thank the captain and crew of the R/V Roger Revelle, and Andrew Lucas with the Multiscale Ocean Dynamics group at the Scripps Institution for Oceanography for providing the FastCTD data collected in 2015, which was supported by ONR Grant N00014-13-1-0489, as well as Eric D’Asaro for helpful discussions and Lance Braasch for assistance with the drifter dataset. AM and SE further thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support. VH and LC were additionally supported by ONR Grants N00014-15-1-2286, N00014-14-1-0183, N00014-19-1-26-91 and NOAA Global Drifter Program (GDP) Grant NA15OAR4320071.2023-02-0

    Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment

    No full text
    For a large beach nourishment called the Sand Engine – constructed in 2011 at the Dutch coast – we have examined the impact of coastal forcing (i.e. natural processes that drive coastal hydro- and morphodynamics) and groundwater recharge on the growth of a fresh groundwater lens between 2011 and 2016. Measurements of the morphological change and the tidal dynamics at the study site were incorporated in a calibrated three-dimensional and variable-density groundwater model of the study area. Simulations with this model showed that the detailed incorporation of both the local hydro- and morphodynamics and the actual recharge rate can result in a reliable reconstruction of the growth in fresh groundwater resources. In contrast, the neglect of tidal dynamics, land-surface inundations, and morphological changes in model simulations can result in considerable overestimations of the volume of fresh groundwater. In particular, wave runup and coinciding coastal erosion during storm surges limit the growth in fresh groundwater resources in dynamic coastal environments, and should be considered at potential nourishment sites to delineate the area that is vulnerable to salinization

    Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment

    No full text
    For a large beach nourishment called the Sand Engine – constructed in 2011 at the Dutch coast – we have examined the impact of coastal forcing (i.e. natural processes that drive coastal hydro- and morphodynamics) and groundwater recharge on the growth of a fresh groundwater lens between 2011 and 2016. Measurements of the morphological change and the tidal dynamics at the study site were incorporated in a calibrated three-dimensional and variable-density groundwater model of the study area. Simulations with this model showed that the detailed incorporation of both the local hydro- and morphodynamics and the actual recharge rate can result in a reliable reconstruction of the growth in fresh groundwater resources. In contrast, the neglect of tidal dynamics, land-surface inundations, and morphological changes in model simulations can result in considerable overestimations of the volume of fresh groundwater. In particular, wave runup and coinciding coastal erosion during storm surges limit the growth in fresh groundwater resources in dynamic coastal environments, and should be considered at potential nourishment sites to delineate the area that is vulnerable to salinization
    corecore