49 research outputs found

    Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels

    Get PDF
    BACKGROUND: Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM) or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10) has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI) and polycystic ovary syndrome (PCOS), a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5) encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A) with several cardiovascular risk factors related to metabolic syndrome in general population. METHODS: Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille), recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR). RESULTS: Genotype association analysis was significant for BMI (p ≤ 0.041), diastolic blood pressure (p = 0.015) and HDL-cholesterol levels (p = 0.025). Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP) (0.0005 ≤ p ≤ 0.006) and total cholesterol levels (0.001 ≤ p ≤ 0.029). In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029). CONCLUSION: As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our results also may suggest CAPN5 as a candidate gene for metabolic syndrome

    AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

    Get PDF
    The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na+) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na+ and K+ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K+ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na+ over K+ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na+ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na+ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na+ channel transport properties

    An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    Get PDF
    Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought

    The Association of Serum Total Peptide YY (PYY) with Obesity and Body Fat Measures in the CODING Study

    Get PDF
    Background: PYY is an appetite suppressing hormone. Low circulating PYY has been linked to greater BMI. However data is controversial and this association has not been verified in large human populations. Objective: The purpose of this study was to investigate if fasting serum total PYY is associated with obesity status and/or adiposity at the population level. Design: A total of 2094 subjects (Male-523, Female-1571) participated in this investigation. Total PYY was measured in fasting serum by enzyme-linked immunosorbent assay. Obesity status (NW-normal-weight, OW-overweight and OB-obese) was determined by the Bray Criteria according to body fat percentage measured by dual-energy x-ray absorptiometry and the WHO criteria according to BMI. One-way ANOVA and multiple regression was used to assess the adiposity-specific association between PYY and the following; weight, BMI, waist-circumference, hip-circumference, waist-hip ratio, percent body fat (%BF), trunk fat (%TF), android fat (%AF) and gynoid fat (%GF). Results: PYY was not significantly different among NW, OW and OB groups defined by neither %BF nor BMI for both men and women. However among women, fasting PYY was positively associated with adiposity measures. Women with the highest (Top 33%) waist-circumference, %BF and %TF had significantly higher PYY (10.5%, 8.3% and 9.2% respectively) than women with the lowest (Bottom 33%). Age, smoking, medication use and menopause were all positively associated with PYY levels in women but not in men. Conclusion: To our knowledge this is the largest population based study, with the most comprehensive analysis and measures of confounding factors, to explore the relationship of circulating PYY with obesity. Contrary to initial findings in the literature we discovered that PYY was positively associated with body fat measures (waist-circumference, %BF and %TF) in women. Although the effect size of the positive association of PYY with obesity in women is small, and potentially negligible, it may in fact represent a protective response against significant weight gain

    Chloride transport and compartmentation within main and lateral roots of two grapevine rootstocks differing in salt tolerance

    No full text
    Root Cl⁻ transport was investigated using ³⁶Cl⁻ flux analysis in two grapevine (Vitis sp.) rootstock hybrids differing in salt tolerance; 1103 Paulsen (salt-tolerant) and K 51–40 (salt sensitive). Initial ³⁶Cl⁻ influx to the root was greater in Paulsen than K 51–40. This flux, attributed to the Cl⁻ influx to the cytoplasm (Φ ₒc) increased with increasing external concentrations of Cl⁻ for plants adapted to growth in 30� mM NaCl. The concentration kinetics in this high concentration range could be fit to a Michaeils–Menton equation. There was no significant difference between genotypes in Km (28.68� ±� 15.76 and 24.27� ±� 18.51� mM for Paulsen and K 51–40, respectively), but Paulsen had greater V ₘₐₓ (0.127� ±� 0.042) compared to K 51–40 (0.059� ±� 0.026� μm� g⁻¹� FW� min⁻¹). In Paulsen, the main root had greater contribution to ³⁶Cl⁻ uptake than lateral roots, there being no significant difference in lateral root influx between the genotypes. ³⁶Cl⁻ transport to the shoot of K 51–40 was greater than for Paulsen. It was estimated that efflux rate from the xylem parenchyma cells to the xylem vessels (Φ cₓ) in K 51–40 was twice that of Paulsen. Compartmental analysis from ³⁶Cl⁻ efflux kinetics confirmed the larger Φ ₒc and the higher ratio of main to lateral root Φ ₒc for Paulsen. Efflux from the cytoplasm (Φ cₒ) was higher than 95� % of Φ ₒc indicating a high degree of cycling across the plasma membrane in roots at these high external Cl⁻ concentrations. Paulsen appears to keep the cytoplasmic Cl⁻ concentration in roots lower than K 51–40 via greater efflux to the vacuole and to the outside medium. The difference in salt tolerance between the genotypes can be attributed to different Cl⁻ transport properties at the plasma membrane and tonoplast and particularly in Cl⁻� efflux to the xylem.Nasser Abbaspour, Brent Kaiser, Stephen Tyerma
    corecore