125 research outputs found

    A Single-Mode, Diode-Pumped Lma Laser To Probe The Spin Orientation Of Ensembles Of 3he And 4he

    No full text
    A diode-pumped Nd:Lanthanum Magnesium Hexaluminate laser was constructed which provides up to 15 mW of single-mode, tunable CW emission at 1083 nm. By appropriately polarizing the narrow-band laser emission (< 10 MHz), the laser can be used to determine the populations of the magnetic substates of the He ( 23S1) atoms. The laser is tuned to one of the absorption peaks of the helium metastable atom by tilting a thin (1 mm) solid, coated etalon placed inside the laser cavity and the absorption is measured. The relative absorption is used to determine the ensemble polarization ; the absolute absorption yields the metastable density

    A High Power Lna Laser For Application To A New Polarized Electron Source

    No full text
    The recent development of high energy electron accelerators has generated a renewed interest in high current, high polarization electron sources. We have investigated several modifications to a method based on a pumped helium afterglow from which we expect improvements over the performances. These ones include the development of a high power, tunable LNA laser and the application of a new optical pumping scheme to the metastable helium atoms

    First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    No full text
    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developed a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed

    Low Energy States of 3181Ga50^{81}_{31} Ga_{50} : Elements on the Doubly-Magic Nature of 78^{78}Ni

    Get PDF
    Excited levels were attributed to 3181^{81}_{31}Ga50_{50} for the first time which were fed in the ÎČ\beta-decay of its mother nucleus 81^{81}Zn produced in the fission of nat^{nat}U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.Comment: 4 pages, REVTeX 4, 5 figures (eps format

    Photonuclear reactions of actinides in the giant dipole resonance region

    Full text link
    Photonuclear reactions at energies covering the giant dipole resonance (GDR) region are analyzed with an approach based on nuclear photoabsorption followed by the process of competition between light particle evaporation and fission for the excited nucleus. The photoabsorption cross section at energies covering the GDR region is contributed by both the Lorentz type GDR cross section and the quasideuteron cross section. The evaporation-fission process of the compound nucleus is simulated in a Monte-Carlo framework. Photofission reaction cross sections are analyzed in a systematic manner in the energy range of ∌\sim 10-20 MeV for the actinides 232^{232}Th, 238^{238}U and 237^{237}Np. Photonuclear cross sections for the medium-mass nuclei 63^{63}Cu and 64^{64}Zn, for which there are no fission events, are also presented. The study reproduces satisfactorily the available experimental data of photofission cross sections at GDR energy region and the increasing trend of nuclear fissility with the fissility parameter Z2/AZ^2/A for the actinides.Comment: 4 pages including 2 tables and 1 figur

    Study of the N=50 major shell effect close to 78^{78}Ni : First evidence of a weak coupling structure in 83_32^{83}\_{32}Ge_51\_{51} and three-proton configuration states in 81_31^{81}\_{31}Ga_50\_{50}

    Get PDF
    New levels were attributed to 81_31^{81}\_{31}Ga_50\_{50} and 83_32^{83}\_{32}Ge_51\_{51} which were fed by the ÎČ\beta-decay of their respective mother nuclei 81_30^{81}\_{30}Zn_51\_{51} and 83_31^{83}\_{31}Ga_52\_{52} produced by fission at the "PARRNe" ISOL set-up installed at the Tandem accelerator of the Institut de Physique Nucl\'eaire, Orsay. We show that the low energy structure of 81_31^{81}\_{31}Ga_50\_{50} and 83_32^{83}\_{32}Ge_51\_{51} can easily be explained within the natural hypothesis of a strong energy gap at N=50 and a doubly-magic character for 78^{78}Ni.Comment: 2 pages, pdf file, To be published in the Proceedings of "International Symposium on Structure of Exotic Nuclei and Nuclear Forces (SENUF 06)", March 2006, Tokyo, Japa

    Ion sources at GANIL

    Get PDF
    International audienceThe GANIL produces since many years heavy ion beams with Electron Cyclotron Resonance ion sources. Different facilities have been constructed during the last years in order to allow experiments in a large range of energy (from some tens of kV to 100 MeV/nucleon). The list of available ions has been greatly extended with the construction of the SPIRAL1 facility that produces and accelerates radioactives ions . An overview of the different developments made at GANIL for stable and radioactive ion beam production including the sources for the SPIRAL2 project is given in this paper

    Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of 132^{132}Sn

    Get PDF
    NESTER ACCLaser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s25p25s^25p^2 3P0→5s25p6s^3P_0 \rightarrow 5s^25_p6s 3P1^3P_1 optical transition, hyperfine spectra of 126−132^{126-132}Sn and 125,127,129−131Snm^{125,127,129-131}Sn^m were recorded for the first time. The nuclear moments and the mean square charge radius variation (ή)wereextracted.Fromthequadrupolemomentvalues,thesenucleiappeartobespherical.Themagneticmomentsmeasuredarethuscomparedwiththosepredictedbysphericalbasisapproaches.Fromthemeasured\delta) were extracted. From the quadrupole moment values, these nuclei appear to be spherical. The magnetic moments measured are thus compared with those predicted by spherical basis approaches. From the measured \delta, the absolute charge radii of these isotopes were deduced in particular that of the doubly magic 132^{132}Sn nucleus. The comparison of the results with several mean-field-type calculations have shown that dynamical effects play an important role in the tin isotopes
    • 

    corecore