2 research outputs found

    Using Artificial Intelligence as a Diagnostic Decision Support Tool in Skin Disease : Protocol for an Observational Prospective Cohort Study

    Get PDF
    Dermatological conditions are a relevant health problem. Each person has an average of 1.6 skin diseases per year, and consultations for skin pathology represent 20% of the total annual visits to primary care and around 35% are referred to a dermatology specialist. Machine learning (ML) models can be a good tool to help primary care professionals, as it can analyze and optimize complex sets of data. In addition, ML models are increasingly being applied to dermatology as a diagnostic decision support tool using image analysis, especially for skin cancer detection and classification. This study aims to perform a prospective validation of an image analysis ML model as a diagnostic decision support tool for the diagnosis of dermatological conditions. In this prospective study, 100 consecutive patients who visit a participant general practitioner (GP) with a skin problem in central Catalonia were recruited. Data collection was planned to last 7 months. Anonymized pictures of skin diseases were taken and introduced to the ML model interface (capable of screening for 44 different skin diseases), which returned the top 5 diagnoses by probability. The same image was also sent as a teledermatology consultation following the current stablished workflow. The GP, ML model, and dermatologist's assessments will be compared to calculate the precision, sensitivity, specificity, and accuracy of the ML model. The results will be represented globally and individually for each skin disease class using a confusion matrix and one-versus-all methodology. The time taken to make the diagnosis will also be taken into consideration. Patient recruitment began in June 2021 and lasted for 5 months. Currently, all patients have been recruited and the images have been shown to the GPs and dermatologists. The analysis of the results has already started. This study will provide information about ML models' effectiveness and limitations. External testing is essential for regulating these diagnostic systems to deploy ML models in a primary care practice setting

    Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care

    Get PDF
    Dermatological conditions are a relevant health problem. Machine learning (ML) models are increasingly being applied to dermatology as a diagnostic decision support tool using image analysis, especially for skin cancer detection and disease classification. The objective of this study was to perform a prospective validation of an image analysis ML model, which is capable of screening 44 skin diseases, comparing its diagnostic accuracy with that of General Practitioners (GPs) and teledermatology (TD) dermatologists in a real-life setting. Prospective, diagnostic accuracy study including 100 consecutive patients with a skin problem who visited a participating GP in central Catalonia, Spain, between June 2021 and October 2021. The skin issue was first assessed by the GPs. Then an anonymised skin disease picture was taken and uploaded to the ML application, which returned a list with the Top-5 possible diagnosis in order of probability. The same image was then sent to a dermatologist via TD for diagnosis, as per clinical practice. The GPs Top-3, ML model's Top-5 and dermatologist's Top-3 assessments were compared to calculate the accuracy, sensitivity, specificity and diagnostic accuracy of the ML models. The overall Top-1 accuracy of the ML model (39%) was lower than that of GPs (64%) and dermatologists (72%). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained (n = 82), the balanced Top-1 accuracy of the ML model increased (48%) and in the Top-3 (75%) was comparable to the GPs Top-3 accuracy (76%). The Top-5 accuracy of the ML model (89%) was comparable to the dermatologist Top-3 accuracy (90%). For the different diseases, the sensitivity of the model (Top-3 87% and Top-5 96%) is higher than that of the clinicians (Top-3 GPs 76% and Top-3 dermatologists 84%) only in the benign tumour pathology group, being on the other hand the most prevalent category (n = 53). About the satisfaction of professionals, 92% of the GPs considered it as a useful diagnostic support tool (DST) for the differential diagnosis and in 60% of the cases as an aid in the final diagnosis of the skin lesion. The overall diagnostic accuracy of the model in this study, under real-life conditions, is lower than that of both GPs and dermatologists. This result aligns with the findings of few existing prospective studies conducted under real-life conditions. The outcomes emphasize the significance of involving clinicians in the training of the model and the capability of ML models to assist GPs, particularly in differential diagnosis. Nevertheless, external testing in real-life conditions is crucial for data validation and regulation of these AI diagnostic models before they can be used in primary care
    corecore