13 research outputs found

    Wheat Domestication Accelerated Evolution and Triggered Positive Selection in the β-Xylosidase Enzyme of Mycosphaerella graminicola

    Get PDF
    Plant cell wall degrading enzymes (PCWDEs) of plant pathogens are receiving increasing interest for their potential to trigger plant defense reactions. In an antagonistic co-evolutionary arms race between host and pathogen, PCWDEs could be under strong selection. Here, we tested the hypothesis that PCWDEs in the fungal wheat pathogen Mycosphaerella graminicola have been positively selected by analyzing ratios of non-synonymous and synonymous nucleotide changes in the genes encoding these enzymes. Analyses of five PCWDEs demonstrated that one (β-xylosidase) has been under strong positive selection and experienced an accelerated rate of evolution. In contrast, PCWDEs in the closest relatives of M. graminicola collected from wild grasses did not show evidence for selection or deviation from a molecular clock. Since the genealogical divergence of M. graminicola from these latter species coincided with the onset of agriculture, we hypothesize that the recent domestication of the host plant and/or agricultural practices triggered positive selection in β-xylosidase and that this enzyme played a key role in the emergence of a host-specialized pathogen

    Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley

    Full text link
    The Rrs2 gene confers resistance to the fungal pathogen Rhynchosporium secalis which causes leaf scald, a major barley disease. The Rrs2 gene was fine mapped to an interval of 0.08 cM between markers 693M6_6 and P1D23R on the distal end of barley chromosome 7HS using an Atlas (resistant) x Steffi (susceptible) mapping population of 9,179 F(2)-plants. The establishment of a physical map of the Rrs2 locus led to the discovery that Rrs2 is located in an area of suppressed recombination within this mapping population. The analysis of 58 barley genotypes revealed a large linkage block at the Rrs2 locus extending over several hundred kb which is present only in Rrs2 carrying cultivars. Due to the lack of recombination in the mapping population and the presence of a Rrs2-specific linkage block, we assume a local chromosomal rearrangement (alien introgression or inversion) in Rrs2 carrying varieties. The variety analysis led to the discovery of eight SNPs which were diagnostic for the Rrs2 phenotype. Based on these SNPs diagnostic molecular markers (CAPS and pyrosequencing markers) were developed which are highly useful for marker-assisted selection in resistance gene pyramiding programmes for Rhynchosporium secalis resistance in barley

    Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae

    Get PDF
    Abstract The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria
    corecore