4 research outputs found

    Procesamiento de señales EEG de un niño con TEA al desarrollar actividades de lectoescritura: determinación de potencia y cronología de eventos

    Get PDF
    Se presenta el análisis y procesamiento de señales electroencefalográficas (EEG) de un niño de 10 años con Trastorno del Espectro Autista al desarrollar actividades de lectoescritura, en este caso, relacionar en pruebas sucesivas palabras con su imagen representativa, como la palabra manzana con una imagen de una manzana. Una vez adquiridas las muestras, se lleva a cabo un análisis de potencia para cada canal mediante el Teorema de Wiener – Khinchine y posteriormente, mediante la Transformada Wavelet se determinan los momentos en los que hubo mayor actividad en cada electrodo. Con esta información se presenta la cronología de eventos de activación registrada por cada electrodo

    Integration of Low-Cost Digital Tools for Preservation of a Sustainable Agriculture System

    No full text
    This work presents an electronic sensing approach composed of a pair of Physical–Chemical and Imaging modules to preserve an aquaponic system. These modules offer constant measurements of the physical–chemical characteristics within the fish tank and the grow bed, and an indication of the health of the growing plants through image processing techniques. This proposal is implemented in a low-cost computer, receiving measurements from five sensors, including a camera, and processing the signals using open-source libraries and software. Periodic measurements of the temperature, water level, light, and pH within the system are collected and shared to a cloud platform that allows their display in a dashboard, accessible through a web page. The health of the vegetables growing in the system is estimated by analyzing visible and infrared spectra, applying feature extraction, and computing vegetation indices. This work provides a low-cost solution for preserving sustainable urban farming systems, suitable for new farming communities

    Attention Measurement of an Autism Spectrum Disorder User Using EEG Signals: A Case Study

    No full text
    Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized by problems with social interaction, low verbal and non-verbal communication skills, and repetitive and restricted behavior. People with ASD usually have variable attention levels because they have hypersensitivity and large amounts of environmental information are a problem for them. Attention is a process that occurs at the cognitive level and allows us to orient ourselves towards relevant stimuli, ignoring those that are not, and act accordingly. This paper presents a methodology based on electroencephalographic (EEG) signals for attention measurement in a 13-year-old boy diagnosed with ASD. The EEG signals are acquired with an Epoc+ Brain–Computer Interface (BCI) via the Emotiv Pro platform while developing several learning activities and using Matlab 2019a for signal processing. For this article, we propose to use electrodes F3, F4, P7, and P8. Then, we calculate the band power spectrum density to detect the Theta Relative Power (TRP), Alpha Relative Power (ARP), Beta Relative Power (BRP), Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and Theta/(Alpha+Beta), which are features related to attention detection and neurofeedback. We train and evaluate several machine learning (ML) models with these features. In this study, the multi-layer perceptron neural network model (MLP-NN) has the best performance, with an AUC of 0.9299, Cohen’s Kappa coefficient of 0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of 0.0701. These findings make it possible to develop better learning scenarios according to the person’s needs with ASD. Moreover, it makes it possible to obtain quantifiable information on their progress to reinforce the perception of the teacher or therapist

    Attention Measurement of an Autism Spectrum Disorder User Using EEG Signals: A Case Study

    No full text
    Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized by problems with social interaction, low verbal and non-verbal communication skills, and repetitive and restricted behavior. People with ASD usually have variable attention levels because they have hypersensitivity and large amounts of environmental information are a problem for them. Attention is a process that occurs at the cognitive level and allows us to orient ourselves towards relevant stimuli, ignoring those that are not, and act accordingly. This paper presents a methodology based on electroencephalographic (EEG) signals for attention measurement in a 13-year-old boy diagnosed with ASD. The EEG signals are acquired with an Epoc+ Brain–Computer Interface (BCI) via the Emotiv Pro platform while developing several learning activities and using Matlab 2019a for signal processing. For this article, we propose to use electrodes F3, F4, P7, and P8. Then, we calculate the band power spectrum density to detect the Theta Relative Power (TRP), Alpha Relative Power (ARP), Beta Relative Power (BRP), Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and Theta/(Alpha+Beta), which are features related to attention detection and neurofeedback. We train and evaluate several machine learning (ML) models with these features. In this study, the multi-layer perceptron neural network model (MLP-NN) has the best performance, with an AUC of 0.9299, Cohen’s Kappa coefficient of 0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of 0.0701. These findings make it possible to develop better learning scenarios according to the person’s needs with ASD. Moreover, it makes it possible to obtain quantifiable information on their progress to reinforce the perception of the teacher or therapist
    corecore