306 research outputs found

    Step-Up Approach for Sodium Butyrate Treatment in Children With Congenital Chloride Diarrhea

    Get PDF
    Objectives: Oral salt substitutive therapy is pivotal for the survival of patients with congenital chloride diarrhea (CLD), however this therapy is unable to influence the symptoms severity. Butyrate has been proposed to limit diarrhea severity in CLD. Unfortunately, the optimal dose schedule is still largely undefined. In addition, butyrate seems not to be well-tolerated by all patients, with some subjects reporting diarrhea worsening. We investigated the efficacy of a step-up therapeutic approach with sodium butyrate in patients who experienced a diarrhea worsening or an absent improvement after the direct administration of 100 mg/kg/day of sodium butyrate. Methods: The efficacy of a step-up therapeutic approach starting from 50 mg/Kg/day with a subsequent 25 mg/kg/day weekly increase up to 100 mg/kg/day of oral sodium butyrate was investigated in previously three unresponsive CLD children. Results: The step-up therapeutic approach resulted effective in limiting diarrhea severity in all our three previously unresponsive CLD patients. Conclusions: Our results suggest the efficacy of the step-up therapeutic approach in CLD children

    Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    Get PDF
    Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics

    A novel pathogenic BRCA1 splicing variant produces partial intron retention in the mature messenger RNA

    Get PDF
    About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to better tailor the clinical management of patients; and to initiate preventive measures in healthy carriers. The pathophysiological significance of newly identified variants poses challenges for genetic counseling. We characterized a new BRCA1 variant discovered in a breast cancer patient during BRCA1/2 screening by next-generation sequencing. Bioinformatic predictions; indicating that the variant is probably pathogenetic; were verified using retro-transcription of the patient's RNA followed by PCR amplifications performed on the resulting cDNA. The variant causes the loss of a canonic donor splice site at position +2 in BRCA1 intron 21; and consequently the partial retention of 156 bp of intron 21 in the patient's transcript; which demonstrates that this novel BRCA1 mutation plays a pathogenetic role in breast cancer. These findings enabled us to initiate appropriate counseling and to tailor the clinical management of this family. Lastly; these data reinforce the importance of studying the effects of sequence variants at the RNA level to verify their potential role in disease onset

    Diagnosi molecolare di sindrome di Brugada in un giovane atleta mediante il sequenziamento di un pannello multigenico con tecniche di nuova generazione

    Get PDF
    Mutations in genes driving the molecular pathways that regulate myocardial functions can predispose to many independent cardiopathies and also to sudden cardiac death (SCD) even in asymptomatic subjects. The overlapping clinical signs or symptoms or even silent phenotypes make it difficult to diagnose these diseases, therefore the risk of undiagnosed disease could be high especially in young adults and athletes, which may then incur in SCD. We describe the case of a clinical asymptomatic eight-year-old child, practicing soccer game, who underwent a screening medical examination to undertake the path of an increasing physical activity to become a competitive athlete, where abnormal signs at ECG indicated a suspicion of an arrhythmogenic heart disease. Molecular screening analysis, to discriminate among the various predisposing gene alterations, was performed using a 75 gene-panel for arrhythmias customized in our laboratory. The child resulted carrier of a loss-of-function mutation in the SCN5A gene (c.1126C>T). About 25% of Brugada patients carry mutations in this gene coding for the cardiac sodium channel. The loss-of-function mutations in SCN5A gene induce alterations of sodium ion conduction in cardiomyocytes, compatible with the Brugada Syndrome. This case report highlights the importance of the implementation of a rapid, sensitive and wide molecular screening to shed light on possible genetic alterations present also in asymptomatic athletes with negative family history, which may often remain undiagnosed, thus exposed to high risk of sudden death

    The STING/TBK1/IRF3/IFN type I pathway is defective in cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is a rare autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation is F508del-CFTR (ΔF) which leads the encoded ion channel towards misfolding and premature degradation. The disease is characterized by chronic bronchopulmonary obstruction, inflammation and airways colonization by bacteria, which are the major cause of morbidity and mortality. The STING pathway is the main signaling route activated in the presence of both self and pathogen DNA, leading to Type I Interferon (IFN I) production and the innate immune response. In this study, we show for the first time the relationship existing in CF between resistant and recurrent opportunistic infections by Pseudomonas aeruginosa and the innate immunity impairment. We demonstrate through ex vivo and in vivo experiments that the pathway is inadequately activated in ΔF condition and the use of direct STING agonists, as 2′,3′-cyclic GMP-AMP (2’, 3’ cGAMP), is able to restore the immune response against bacterial colonization. Indeed, upon treatment with the STING pathway agonists, we found a reduction of colony forming units (CFUs) consequent to IFN-β enhanced production in Pseudomonas aeruginosa infected bone marrow derived macrophages and lung tissues from mice affected by Cystic Fibrosis. Importantly, we also verified that the impairment detected in the primary PBMCs obtained from ΔF patients can be corrected by 2’, 3’ cGAMP. Our work indicates that the cGAS/STING pathway integrity is crucial in the Cystic Fibrosis response against pathogens and that the restoration of the pathway by 2’, 3’ cGAMP could be exploited as a possible new target for the symptomatic treatment of the disease

    The molecular analysis of BRCA1 and BRCA2: Next-generation sequencing supersedes conventional approaches

    Get PDF
    Abstract Background Accurate and sensitive detection of BRCA 1/2 germ-line mutations is crucial for the clinical management of women affected by breast cancer, for prevention and, notably, also for the identification of at-risk healthy relatives. The most widely used methods for BRCA1 / 2 molecular analysis are Sanger sequencing, and denaturing high performance liquid chromatography (dHPLC) followed by the Sanger method. However, recent findings suggest that next-generation sequencing (NGS)-based approaches may be an efficient tool for diagnostic purposes. In this context, we evaluated the effectiveness of NGS for BRCA gene analysis compared with dHPLC/Sanger sequencing. Methods Seventy women were screened for BRCA1/2 mutations by both dHPLC/Sanger sequencing and NGS, and the data were analyzed using a bioinformatic pipeline. Results Sequence data analysis showed that NGS is more sensitive in detecting BRCA 1/2 variants than the conventional procedure, namely, dHPLC/Sanger. Conclusion Next-generation sequencing is more sensitive, faster, easier to use and less expensive than the conventional Sanger method. Consequently, it is a reliable procedure for the routine molecular screening of the BRCA 1/2 genes

    Regulation of inflammation and oxidative stress by formyl peptide receptors in cardiovascular disease progression

    Get PDF
    G protein-coupled receptors (GPCRs) are the most important regulators of cardiac function and are commonly targeted for medical therapeutics. Formyl-Peptide Receptors (FPRs) are members of the GPCR superfamily and play an emerging role in cardiovascular pathologies. FPRs can modulate oxidative stress through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) production whose dysregulation has been observed in different cardiovascular diseases. Therefore, many studies are focused on identifying molecular mechanisms of the regulation of ROS production. FPR1, FPR2 and FPR3 belong to the FPRs family and their stimulation triggers phosphorylation of intracellular signaling molecules and nonsignaling proteins that are required for NADPH oxidase activation. Some FPR agonists trigger inflammatory processes, while other ligands activate proresolving or anti-inflammatory pathways, depending on the nature of the ligands. In general, bacterial and mitochondrial formylated peptides activate a proinflammatory cell response through FPR1, while Annexin A1 and Lipoxin A4 are anti-inflammatory FPR2 ligands. FPR2 can also trigger a proinflammatory pathway and the switch between FPR2-mediated pro- and anti-inflammatory cell responses depends on conformational changes of the receptor upon ligand binding. Here we describe the detrimental or beneficial effects of the main FPR agonists and their potential role as new therapeutic and diagnostic targets in the progression of cardiovascular diseases

    Endoscopic and Surgical Removal of Gastrointestinal Foreign Bodies in Dogs: An Analysis of 72 Cases

    Get PDF
    In emergency veterinary practice, gastrointestinal foreign body (GFB) removal is a common procedure that is performed with different techniques, such as endoscopy or surgery. The aims of this retrospective, multicentre, clinical study were to report the common locations and types of objects recovered and to investigate clinical factors and outcomes in dogs after surgical or endoscopic treatment for GFB removal. Records of dogs with a GFB diagnosis referred to the Teaching Veterinary Hospital or treated in three different veterinary hospitals from September 2017 to September 2019 were examined. The data obtained from each case included breed, age, clinical signs at presentation, duration of clinical signs, type and location of the GFB, treatment, length of hospitalisation and outcome. Seventy-two dogs were enrolled in the study. There were 42 males (58%) and 30 females (42%). The median age was 36 months (range: 3 months to 8 years). Endoscopic retrieval was performed in 56% of GFBs (located in the stomach or duodenum), whereas 44% of dogs underwent surgery. The type of FB detected varied greatly: kid toy (14%), metallic object/coin (13%), cloth (13%), sock (8%), ball (8%), plastic material (8%), peach stone (7%), fishhook (6%), sewing needle (4%), hair tie (4%), pacifier (3%), plant materials (3%) and others (9%). Moreover, the FBs were classified as sharp (13%, n = 9), pointed (33%, n = 24), blunt (26%, n = 19), or linear (28%, n = 20). In this study, 68% of FBs were localised in the stomach, 25% in the intestinal tract (50% duodenum, 28% jejunum, and 22% ileum), and 7% in both the stomach and small intestine. The type of GFB was not significantly associated with age, site or breed. There was a significant association between the type of GFB and sex: if the dog was male, there was a 38% probability of ingesting linear GFBs. The dog survival rate was 100% in cases treated by gastric endoscopic or surgical removal, 94% in cases treated with enterotomy and 33% in cases in which enterectomy was necessary. Enterectomy and multiple surgical sites were associated with a poor outcome. The presence of vomiting for more than 24 h was significantly associated with death

    Identification of a Sorbicillinoid-Producing Aspergillus Strain with Antimicrobial Activity Against Staphylococcus aureus: a New Polyextremophilic Marine Fungus from Barents Sea

    Get PDF
    The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillusprotuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 μg/mL. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    The “polonium in vivo” study. Polonium-210 in bronchial lavages of patients with suspected lung cancer

    Get PDF
    Few studies have reported on polonium-210, a decay breakdown product of radon-222 and lead-210, in human lungs and there has been no study in patients with suspected lung cancer. The main aim of this "Polonium in vivo" study was to evaluate polonium-210 radioactivity in bronchopulmonary systems of smoker, ex-smoker and never smoker patients with suspected lung cancer. Alpha-spectrometric analyses were performed on bronchial lavage (BL) fluids from two Italian hospitals in 2013-2016. Socio-demographic, smoking, occupational and spirometric characteristics, lung cancer confirmation and histologic type and radon-222 concentration in patients' homes were collected. Seventy BL samples from never (n = 13), former (n = 35) and current smokers (n = 22) were analyzed; polonium-210 was detected in all samples from current and former smokers and in 54% of samples from never smokers (p < 0.001; median values: 1.20, 1.43 and 0.40 mBq, respectively). Polonium-210 levels were significantly higher in COPD versus no COPD patients (median value: 3.60 vs. 0.97 mBq; p = 0.007); former and current smokers, without and with COPD, had significantly increased polonium-210 levels (p = 0.012); 96% of confirmed versus 69% of non-confirmed lung cancer patients recorded detectable polonium-210 levels (p = 0.018). A polonium-210 detectable activity was measured in BL samples from all current and former smokers. Polonium-210 in the lungs could be the result of lead-210 entrapment, which, with its half-life of 22 years, could provide a continuous emission of alpha radioactivity, even many years after quitting, thus proposing a possible explanation for the onset of lung cancer, particularly in former smokers
    • …
    corecore