4 research outputs found

    Ingenierías de aditivos en celdas solares tipo perovskita

    Get PDF
    Perovskite (CSP) solar cells have changed the research paradigm in the area of photovoltaics, due to the combination of high efficiencies along with lower cost and ease of manufacture. CSP can be manufactured using methodologies based on solutions of precursor compounds for the deposition of perovskite films. Among these compounds are the inorganic lead halides (Pbl2, PbCl2,PbBr2) in combination with organic methylammonium (MA), with reported efficiency values up to 25%. Despite their high efficiencies, these materials have disadvantages, such as the sensitivity of the perovskite film to ambient humidity, resulting in a short device life time. An alternative to reduce stability problems is the application of additives that increase the stability of the cell. Said additives are ionic liquids formed by a cation and an anion with a highly hydrophobic character, based on phosphonium (tetrabutyl phosphonium tetraburoborate (B4PBF4). The additive significantly improves the morphology of the films, obtaining promising improvements in the stability of the devicesLas celdas solares de perovskita (CSP) han cambiado el paradigma de investigación en el área de la energía fotovoltaica debido a la combinación de altas eficiencias junto con un menor costo y facilidad de fabricación. Las CSP se pueden fabricar mediante metodologías basadas en soluciones de compuestos precursores para el depósito de las películas de estructura tipo perovskita.Entre esos compuestos se encuentran los haluros de plomo inorgánicos (Pbl2, PbCl2, PbBr2) en combinación con compuesto orgánico metilamonio (MA) que se reporta que han alcanzado hasta un 25 % de eficiencia. A pesar de ello, estos materiales presentan desventajas como la sensibilidad de la película de perovskita a la humedad del ambiente, lo que resulta un tiempo de vida de los dispositivos corto. Una alternativa para estabilizar la celda es la aplicación de aditivos, los cuales son líquidos iónicos formados por un catión y un anión con un carácter altamente hidrófobo, basados en fosfonio (tetraburoborato de tetrabutil fosfonio(B4PBF4). El aditivo mejora significativamente la morfología de las películas, obteniendo mejoras prometedoras en la estabilidad de los dispositivos

    Síntesis y caracterización del Mg(BOB)2 como electrolito para baterías recargables de iones de magnesio

    Get PDF
    Se llevó a cabo el proceso de obtención libre de solventes de la sal bis(oxalato)borato de magnesio (Mg(B(C2O4)2)2, Mg(BOB)2), la cual es potencialmente viable para ser utilizada como material electrolítico en baterías recargables de iones de magnesio (RMIB). La síntesis utilizada fue por estado sólido donde en un primer paso se mezcló manual y homogéneamente, dentro de un mortero de ágata, sus tres precursores; ácido oxálico, ácido bórico e hidróxido de magnesio con una relación molar de 4:2:1, respectivamente. Como segundo paso, y debido a que se utilizan compuestos higroscópicos, se evitó la exposición de manera prolongada a la humedad ambiental llevándolos a un secado dentro un horno de vacío a 60 °C durante 1 h continua seguido de un tratamiento térmico de 110 °C por 3 h, para la eliminación del agua residual previo a la temperatura de síntesis de 150 °C. El Mg(BOB)2 sintetizado se caracterizó por difracción de rayos X (DRX) y por microscopía electrónica de barrido (MEB). Los resultados obtenidos mediante espectroscopia infrarroja por transformada de Fourier (FTIR) dentro del rango de número de onda de 4000–400 cm−1 confirmaron la aparición de los grupos funcionales del Mg(BOB)2, identificados por sus bandas características de absorción C=O, C-O-B-O-C, O-B-O y B-O. Además, el polvo del Mg(BOB)2 se utilizó para preparar un electrolito líquido con el solvente tetrahidrofurano (THF) y se evaluó en celdas de tres electrodos así como en medias celdas prototipo, caracterizadas con curvas de voltamperometría cíclica (VC)
    corecore