9,031 research outputs found

    Unraveling public good games

    Get PDF
    This paper provides experimental evidence on how players predict end-game effects in a linear public good game. Our regression analysis yields a measure of the relative importance of priors and signals on subjects’ beliefs on contributions and allows us to conclude that, first, the weight of the signal is relatively unimportant, while priors have a large weight and, second, priors are the same for all periods. Hence, subjects do not expect end-game effects and there is very little updating of beliefs. We argue that the sustainability of cooperation is related to this pattern of belief formation

    Defect chemistry and transport properties of BaxCe0.85M0.15O3-d

    Get PDF
    The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs

    Time discounting and pain anticipation: experimental evidence

    Get PDF
    This paper deals with pain anticipation experienced before medical procedures. Our experimental results show that individuals with lower time discount factors are more prone to suffer pain in advance. We provide a framework to rationalize the connection between pain anticipation and impatience. In this set up, more impatient subjects, who only value very near events, mainly take into account the present negative effects of medical procedures (the costs), whereas more patient individuals have a net positive valuation of medical events,given that they are able to value both the cost incurred now and all the benefits to be accrued in the future

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Heisenberg quantization for the systems of identical particles and the Pauli exclusion principle in noncommutative spaces

    Get PDF
    We study the Heisenberg quantization for the systems of identical particles in noncommtative spaces. We get fermions and bosons as a special cases of our argument, in the same way as commutative case and therefore we conclude that the Pauli exclusion principle is also valid in noncommutative spaces.Comment: 8 pages, 1 figur

    Holographic Technidilaton and LHC searches

    Full text link
    We analyze in detail the phenomenology of a model of dynamical electroweak symmetry breaking inspired by walking technicolor, by using the techniques of the bottom-up approach to holography. The model admits a light composite scalar state, the dilaton, in the spectrum. We focus on regions of parameter space for which the mass of such dilaton is 125 GeV, and for which the bounds on the precision electroweak parameter S are satisfied. This requires that the next-to-lightest composite state is the techni-rho meson, with a mass larger than 2.3 TeV. We compute the couplings controlling the decay rates of the dilaton to two photons and to two (real or virtual) Z and W bosons. For generic choices of the parameters, we find a suppression of the decay into heavy gauge bosons, in respect to the analog decay of the standard-model Higgs. We find a dramatic effect on the decay into photons, which can be both strongly suppressed or strongly enhanced, the latter case corresponding to the large-N regime of the dual theory. There is a correlation between this decay rate of the dilaton into photons and the mass splitting between the techni-rho meson and its axial-vector partner: if the decay is enhanced in respect to the standard-model case, then the heavy spin-1 resonances are nearly degenerate in mass, otherwise their separation in mass is comparable to the mass scale itself.Comment: Very minor typos corrected. References adde

    Particle Currents in a Space-Time dependent and CP-violating Higgs Background: a Field Theory Approach

    Get PDF
    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely.Comment: 21 pages, LaTeX file, uses epsf.sty. 4 figures available as a compressed .ep

    Condensation in an Economic Model with Brand Competition

    Full text link
    We present a linear agent based model on brand competition. Each agent belongs to one of the two brands and interacts with its nearest neighbors. In the process the agent can decide to change to the other brand if the move is beneficial. The numerical simulations show that the systems always condenses into a state when all agents belong to a single brand. We study the condensation times for different parameters of the model and the influence of different mechanisms to avoid condensation, like anti monopoly rules and brand fidelity.Comment: Accepted in: International Journal of Modern Physics
    • …
    corecore