323 research outputs found

    IpaD Localizes to the Tip of the Type III Secretion System Needle of Shigella flexneri

    Get PDF
    This is the publisher's version, also available electronically from http://iai.asm.org/content/74/8/4391Shigella flexneri, the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host cell membrane to form a pore for translocating late effectors into the target cell cytoplasm. The resulting pathogen-host cross talk results in localized actin polymerization, membrane ruffling, and, ultimately, pathogen entry. IpaD is essential for host cell invasion, but its role in this process is just now coming to light. IpaD is a multifunctional protein that controls the secretion and presentation of IpaB and IpaC at the pathogen-host interface. We show here that antibodies recognizing the surface-exposed N terminus of IpaD neutralize Shigella's ability to promote pore formation in erythrocyte membranes. We further show that MxiH and IpaD colocalize on the bacterial surface. When TTSS needles were sheared from the Shigella surface, IpaD was found at only the needle tips. Consistent with this, IpaD localized to the exposed tips of needles that were still attached to the bacterium. Molecular analyses then showed that the IpaD C terminus is required for this surface localization and function. Furthermore, mutations that prevent IpaD surface localization also eliminate all IpaD-related functions. Thus, this study demonstrates that IpaD localizes to the TTSA needle tip, where it functions to control the secretion and proper insertion of translocators into host cell membrane

    IpaD Localizes to the Tip of the Type III Secretion System Needle of Shigella flexneri

    Get PDF
    This is the publisher's version, also available electronically from http://iai.asm.org/content/74/8/4391Shigella flexneri, the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host cell membrane to form a pore for translocating late effectors into the target cell cytoplasm. The resulting pathogen-host cross talk results in localized actin polymerization, membrane ruffling, and, ultimately, pathogen entry. IpaD is essential for host cell invasion, but its role in this process is just now coming to light. IpaD is a multifunctional protein that controls the secretion and presentation of IpaB and IpaC at the pathogen-host interface. We show here that antibodies recognizing the surface-exposed N terminus of IpaD neutralize Shigella's ability to promote pore formation in erythrocyte membranes. We further show that MxiH and IpaD colocalize on the bacterial surface. When TTSS needles were sheared from the Shigella surface, IpaD was found at only the needle tips. Consistent with this, IpaD localized to the exposed tips of needles that were still attached to the bacterium. Molecular analyses then showed that the IpaD C terminus is required for this surface localization and function. Furthermore, mutations that prevent IpaD surface localization also eliminate all IpaD-related functions. Thus, this study demonstrates that IpaD localizes to the TTSA needle tip, where it functions to control the secretion and proper insertion of translocators into host cell membrane

    Amino acid profile in malnourished patients with liver cirrhosis and its modification with oral nutritional supplements: Implications on minimal hepatic encephalopathy

    Get PDF
    Low plasma levels of branched chain amino acids (BCAA) in liver cirrhosis are associated with hepatic encephalopathy (HE). We aimed to identify a metabolic signature of minimal hepatic encephalopathy (MHE) in malnourished cirrhotic patients and evaluate its modification with oral nutritional supplements (ONS) enriched with ß-Hydroxy-ß-methylbutyrate (HMB), a derivative of the BCAA leucine. Post hoc analysis was conducted on a double-blind placebo-controlled trial of 43 individuals with cirrhosis and malnutrition, who were randomized to receive, for 12 weeks, oral supplementation twice a day with either 220 mL of Ensure® Plus Advance (HMB group, n = 22) or with 220 mL of Ensure® Plus High Protein (HP group, n = 21). MHE evaluation was by psychometric hepatic encephalopathy score (PHES). Compared to the HP group, an HMB-specific treatment effect led to a larger increase in Val, Leu, Phe, Trp and BCAA fasting plasma levels. Both treatments increased Fischer’s ratio and urea without an increase in Gln or ammonia fasting plasma levels. MHE was associated with a reduced total plasma amino acid concentration, a reduced BCAA and Fischer´s ratio, and an increased Gln/Glu ratio. HMB-enriched ONS increased Fischer´s ratio without varying Gln or ammonia plasma levels in liver cirrhosis and malnutrition, a protective amino acid profile that can help prevent MHE. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Get PDF
    BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. CONCLUSION: In a single paraffin block BHP preserved the phosphorylation state of several signaling proteins at a level comparable to snap-freezing, while maintaining the full diagnostic immunohistochemical and histomorphologic detail of formalin fixation. This new tissue fixative has the potential to greatly facilitate personalized medicine, biobanking, and phospho-proteomic research

    Carbon materials from conventional/unconventional technologies for electrochemical energy storage devices

    Get PDF
    In the last years our society has shown a growing interest on the development of both new sources of clean energy and advanced devices able to store it. In this context supercapacitors (SCs) and hybrid systems have emerged to cover the power and energy demands. Most of these electrochemical devices use carbon materials as electrodes being the activated carbons (ACs) the most commonly ones. Nonetheless graphene (G) has emerged as a promising electrode either by itself or combined with ACs in composites. This work investigates the use of a low added value coal-derived liquid (anthracene oil, AO) for the production of pitch-like carbon precursors to synthesize suitable active electrode materials (ACs, G, AC/G) in SCs and hybrid systems. In addition to the well-known oxidative thermal polymerization of AO, a new alternative based on the use of microwave heating is presented as a promising clean route to obtain such carbon precursors resulting in energy saving, shortening time and specific nonthermal effects. The characteristics of the carbon materials obtained from both conventional/ unconventional technologies are compared mainly in terms of their specific surface area, surface chemistry and electrical conductivity which would allow the design of energy storage devices with an improved electrochemical performance

    RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest.</p> <p>Results</p> <p>In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape.</p> <p>Conclusion</p> <p>The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.</p

    Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis

    Get PDF
    Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio

    High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Get PDF
    Background: Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti
    corecore