109 research outputs found

    Long-lived protoplanetary disks in multiple systems: the VLA view of HD 98800

    Full text link
    The conditions and evolution of protoplanetary disks in multiple systems can be considerably different from those around single stars, which may have important consequences for planet formation. We present Very Large Array (VLA) 8.8 mm (34 GHz) and 5 cm (6 GHz) observations of the quadruple system HD 98800, which consists of two spectroscopic binary systems (Aa-Ab, Ba-Bb). The Ba-Bb pair is surrounded by a circumbinary disk, usually assumed to be a debris disk given its ∌\sim10 Myr age and lack of near infrared excess. The VLA 8.8 mm observations resolve the disk size (5-5.5 au) and its inner cavity (≈\approx3 au) for the first time, making it one of the smallest disks known. Its small size, large fractional luminosity, and millimeter spectral index consistent with blackbody emission support the idea that HD 98800 B is a massive, optically thick ring which may still retain significant amounts of gas. The disk detection at 5 cm is compatible with free-free emission from photoionized material. The diskless HD 98800 A component is also detected, showing partial polarization at 5 cm compatible with non-thermal chromospheric activity. We propose that tidal torques from Ba-Bb and A-B have stopped the viscous evolution of the inner and outer disk radii, and the disk is evolving via mass loss through photoevaporative winds. This scenario can explain the properties and longevity of HD 98800 B as well as the lack of a disk around HD 98800 A, suggesting that planet formation could have more time to proceed in multiple systems than around single stars in certain system configurations.Comment: 14 pages, 4 figures, 3 tables; Submitted to ApJ May 14 2018; Accepted to ApJ August 3 2018. This version fixes a mistake in the reported position angle. The order of the figures has been changed to match that of the references in the tex

    Dust Filtration by Planet-Induced Gap Edges: Implications for Transitional Disks

    Full text link
    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk - the so-called "dust filtration" mechanism. We have found that a gap opened by a giant planet at 20 AU in a \alpha=0.01, \dot{M}=10^{-8} Msun/yr disk can effectively stop dust particles larger than 0.1 mm drifting inwards, leaving a sub-millimeter dust cavity/hole. However, smaller particles are difficult to filter by a planet-induced gap due to 1) dust diffusion, and 2) a high gas accretion velocity at the gap edge. An analytic model is also derived to understand what size particles can be filtered by the gap edge. Finally, with our updated understanding of dust filtration, we have computed Monte-Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions (SEDs) of disks with gaps. By comparing with transitional disk observations (e.g. GM Aur), we have found that dust filtration alone has difficulties to deplete small particles sufficiently to explain the near-IR deficit of transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is by invoking both dust filtration and dust growth in the inner disk. In this scenario, a planet induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g. dust growth) to explain the near-IR deficit.Comment: 23 Pages, 11 figures, Accepted by Ap

    An Observational Perspective of Transitional Disks

    Get PDF
    Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as ALMA reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)mm and infrared. We then distill the observations into constraints for the main disk clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and explore how the expected observational signatures from these mechanisms, particularly planet-induced disk clearing, compare to actual observations. Lastly, we discuss future avenues of inquiry to be pursued with ALMA, JWST, and next generation of ground-based telescopes.Comment: 24 pages, 13 figures, Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin
    • 

    corecore