3 research outputs found

    Contribution of long noncoding RNA HOTAIR variants to preeclampsia susceptibility in Iranian women

    No full text
    Objective: To investigate the possible association of lncRNA HOTAIR rs920778 and rs874945 polymorphisms with preeclampsia risk in a sample from the Iranian population. Method: The study subjects included 250 preeclamptic women and 250 healthy women. The genotyping for rs920778 and rs874945 polymorphisms were performed using the TP-ARMS-PCR method. Results: HOTAIR rs920778 increased the risk of preeclampsia under the dominant and recessive inheritance patterns (OR = 4.84, 95% CI: 3.30–7.10, P < 0.0001; OR = 6.86, 95% CI: 3.51–13.42, P < 0.0001; respectively). Conclusion: This study confirmed the association of HOTAIR rs920778 polymorphism with preeclampsia in Iranian women. Further studies should be performed to confirm our findings

    CREB-binding protein (CREBBP) and preeclampsia: a new promising target gene

    No full text
    Preeclampsia (PE) is a major complication of pregnancy and remains a leading cause of neonatal and maternal mortality worldwide. Several studies have revealed that the incidence of preeclampsia is high in mothers who carried a fetus with Rubinstein-Taybi Syndrome due to the mutation in CREBBP. We aimed to compare the expression level of the CERBBP gene between preeclamptic and healthy placenta in our study. The expression level of CREBBP gene was evaluated in a total of one hundred placental biopsies from PE patients and healthy pregnant women after delivery using quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the differential expression of CREBBP was assessed between the maternal and fetal sides of the placenta. Expression of the CREBBP gene was higher in preeclampsia patients compared with the controls (Fold change = 2.158; P = 0.018). Moreover, the gene expression was slightly higher in the fetal side of the placenta, although it was not significantly different (Fold change = 1.713, P = 0.254). Our findings show a role for CREBBP in the pathogenesis of PE. Due to the important role of CREBBP in angiogenesis and hypoxia, the gene may serve as a promising target in future studies

    Biallelic loss-of-function variants in the splicing regulator NSRP1 cause a severe neurodevelopmental disorder with spastic cerebral palsy and epilepsy

    No full text
    Purpose Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. Methods Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. Results We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. Conclusion We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy
    corecore