2 research outputs found

    Development and Characterization of a Luminescence-Based High-Throughput Serum Bactericidal Assay (L-SBA) to Assess Bactericidal Activity of Human Sera against Nontyphoidal Salmonella

    Get PDF
    Salmonella Typhimurium and Salmonella Enteritidis are leading causative agents of invasive nontyphoidal Salmonella (iNTS) disease, which represents one of the major causes of death and morbidity in sub-Saharan Africa, still partially underestimated. Large sero-epidemiological studies are necessary to unravel the burden of disease and guide the introduction of vaccines that are not yet available. Even if no correlate of protection has been determined so far for iNTS, the evaluation of complement-mediated functionality of antibodies generated towards natural infection or elicited upon vaccination may represent a big step towards this achievement. Here we present the setup and the intra-laboratory characterization in terms of repeatability, intermediate precision, linearity, and specificity of a high-throughput luminescence-based serum bactericidal assay (L-SBA). This method could be useful to perform sero-epidemiological studies across iNTS endemic countries and for evaluation of antibodies raised against iNTS vaccine candidates in upcoming clinical trials

    Characterization of Enzyme-Linked Immunosorbent Assay (ELISA) for Quantification of Antibodies against <i>Salmonella</i> Typhimurium and <i>Salmonella</i> Enteritidis O-Antigens in Human Sera

    No full text
    Nontyphoidal Salmonella (NTS) is a leading cause of morbidity and mortality caused by enteric pathogens worldwide in both children and adults, and vaccines are not yet available. The measurement of antigen-specific antibodies in the sera of vaccinated or convalescent individuals is crucial to understand the incidence of disease and the immunogenicity of vaccine candidates. A solid and standardized assay used to determine the level of specific anti-antigens IgG is therefore of paramount importance. In this work, we presented the characterization of a customized enzyme-linked immunosorbent assay (ELISA) with continuous readouts and a standardized definition of EU/mL. We assessed various performance parameters: standard curve accuracy, dilutional linearity, intermediate precision, specificity, limits of blanks, and quantification. The simplicity of the assay, its high sensitivity and specificity coupled with its low cost and the use of basic consumables and instruments without the need of high automation makes it suitable for transfer and application to different laboratories, including resource-limiting settings where the disease is endemic. This ELISA is, therefore, fit for purpose to be used for quantification of antibodies against Salmonella Typhimurium and Salmonella Enteritidis O-antigens in human samples, both for vaccine clinical trials and large sero-epidemiological studies
    corecore