26 research outputs found
End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification
As shown in computer vision, the power of deep learning lies in automatically
learning relevant and powerful features for any perdition task, which is made
possible through end-to-end architectures. However, deep learning approaches
applied for classifying medical images do not adhere to this architecture as
they rely on several pre- and post-processing steps. This shortcoming can be
explained by the relatively small number of available labeled subjects, the
high dimensionality of neuroimaging data, and difficulties in interpreting the
results of deep learning methods. In this paper, we propose a simple 3D
Convolutional Neural Networks and exploit its model parameters to tailor the
end-to-end architecture for the diagnosis of Alzheimer's disease (AD). Our
model can diagnose AD with an accuracy of 94.1\% on the popular ADNI dataset
using only MRI data, which outperforms the previous state-of-the-art. Based on
the learned model, we identify the disease biomarkers, the results of which
were in accordance with the literature. We further transfer the learned model
to diagnose mild cognitive impairment (MCI), the prodromal stage of AD, which
yield better results compared to other methods
A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs
Representing the reservoir as a network of discrete compartments with
neighbor and non-neighbor connections is a fast, yet accurate method for
analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale
compartments with distinct static and dynamic properties is an integral part of
such high-level reservoir analysis. In this work, we present a hybrid framework
specific to reservoir analysis for an automatic detection of clusters in space
using spatial and temporal field data, coupled with a physics-based multiscale
modeling approach. In this work a novel hybrid approach is presented in which
we couple a physics-based non-local modeling framework with data-driven
clustering techniques to provide a fast and accurate multiscale modeling of
compartmentalized reservoirs. This research also adds to the literature by
presenting a comprehensive work on spatio-temporal clustering for reservoir
studies applications that well considers the clustering complexities, the
intrinsic sparse and noisy nature of the data, and the interpretability of the
outcome.
Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal
Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
We propose MeshfreeFlowNet, a novel deep learning-based super-resolution
framework to generate continuous (grid-free) spatio-temporal solutions from the
low-resolution inputs. While being computationally efficient, MeshfreeFlowNet
accurately recovers the fine-scale quantities of interest. MeshfreeFlowNet
allows for: (i) the output to be sampled at all spatio-temporal resolutions,
(ii) a set of Partial Differential Equation (PDE) constraints to be imposed,
and (iii) training on fixed-size inputs on arbitrarily sized spatio-temporal
domains owing to its fully convolutional encoder. We empirically study the
performance of MeshfreeFlowNet on the task of super-resolution of turbulent
flows in the Rayleigh-Benard convection problem. Across a diverse set of
evaluation metrics, we show that MeshfreeFlowNet significantly outperforms
existing baselines. Furthermore, we provide a large scale implementation of
MeshfreeFlowNet and show that it efficiently scales across large clusters,
achieving 96.80% scaling efficiency on up to 128 GPUs and a training time of
less than 4 minutes.Comment: Supplementary Video: https://youtu.be/mjqwPch9gDo. Accepted to SC2
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
We propose MeshfreeFlowNet, a novel deep learning-based super-resolution framework to generate continuous (grid-free) spatio-temporal solutions from the low-resolution inputs. While being computationally efficient, MeshfreeFlowNet accurately recovers the fine-scale quantities of interest. MeshfreeFlowNet allows for: (i) the output to be sampled at all spatio-temporal resolutions, (ii) a set of Partial Differential Equation (PDE) constraints to be imposed, and (iii) training on fixed-size inputs on arbitrarily sized spatio-temporal domains owing to its fully convolutional encoder.
We empirically study the performance of MeshfreeFlowNet on the task of super-resolution of turbulent flows in the Rayleigh-Benard convection problem. Across a diverse set of evaluation metrics, we show that MeshfreeFlowNet significantly outperforms existing baselines.
Furthermore, we provide a large scale implementation of MeshfreeFlowNet and show that it efficiently scales across large clusters, achieving 96.80% scaling efficiency on up to 128 GPUs and a training time of less than 4 minutes.
We provide an open-source implementation of our method that supports arbitrary combinations of PDE constraints