53 research outputs found

    Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag virions

    Get PDF
    The HIV structural protein Gag assembles to form spherical particles of radius ∼70 nm. During the assembly process, the number of Gag proteins increases over several orders of magnitude from a few at nucleation to thousands at completion. The challenge in studying protein assembly lies in the fact that current methods such as standard fluorescence or electron microscopy techniques cannot access all stages of the assembly process in a cellular context. Here, we demonstrate an approach using super-resolution fluorescence imaging that permits quantitative morphological and molecular counting analysis over a wide range of protein cluster sizes. We applied this technique to the analysis of hundreds of HIV-Gag clusters at the cellular plasma membrane, thus elucidating how different fluorescent labels can change the assembly of virions

    High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila suzukii, a Relative of D. melanogaster

    Get PDF
    Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    Abnormal clot microstructure formed in blood containing HIT-like antibodies

    Get PDF
    IntroductionThrombosis is a severe and frequent complication of heparin-induced thrombocytopenia (HIT). However, there is currently no knowledge of the effects of HIT-like antibodies on the resulting microstructure of the formed clot, despite such information being linked to thrombotic events. We evaluate the effect of the addition of pathogenic HIT-like antibodies to blood on the resulting microstructure of the formed clot.Materials and methodsPathogenic HIT-like antibodies (KKO) and control antibodies (RTO) were added to samples of whole blood containing Unfractionated Heparin and Platelet Factor 4. The formed clot microstructure was investigated by rheological measurements (fractal dimension; df) and scanning electron microscopy (SEM), and platelet activation was measured by flow cytometry.Results and conclusionsOur results revealed striking effects of KKO on clot microstructure. A significant difference in df was found between samples containing KKO (df = 1.80) versus RTO (df = 1.74; p < 0.0001). This increase in df was often associated with an increase in activated platelets. SEM images of the clots formed with KKO showed a network consisting of a highly branched and compact arrangement of thin fibrin fibres, typically found in thrombotic disease. This is the first study to identify significant changes in clot microstructure formed in blood containing HIT-like antibodies. These observed alterations in clot microstructure can be potentially exploited as a much-needed biomarker for the detection, management and monitoring of HIT-associated thrombosis

    The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune Suppressive Parasite

    Get PDF
    Occurrence of intraspecific variation in parasite virulence, a prerequisite for coevolution of hosts and parasites, has largely been reported. However, surprisingly little is known of the molecular bases of this variation in eukaryotic parasites, with the exception of the antigenic variation used by immune-evading parasites of mammals. The present work aims to address this question in immune suppressive eukaryotic parasites. In Leptopilina boulardi, a parasitic wasp of Drosophila melanogaster, well-defined virulent and avirulent strains have been characterized. The success of virulent females is due to a major immune suppressive factor, LbGAP, a RacGAP protein present in the venom and injected into the host at oviposition. Here, we show that an homologous protein, named LbGAPy, is present in the venom of the avirulent strain. We then question whether the difference in virulence between strains originates from qualitative or quantitative differences in LbGAP and LbGAPy proteins. Results show that the recombinant LbGAPy protein has an in vitro GAP activity equivalent to that of recombinant LbGAP and similarly targets Drosophila Rac1 and Rac2 GTPases. In contrast, a much higher level of both mRNA and protein is found in venom-producing tissues of virulent parasitoids. The F1 offspring between virulent and avirulent strains show an intermediate level of LbGAP in their venom but a full success of parasitism. Interestingly, they express almost exclusively the virulent LbGAP allele in venom-producing tissues. Altogether, our results demonstrate that the major virulence factor in the wasp L. boulardi differs only quantitatively between virulent and avirulent strains, and suggest the existence of a threshold effect of this molecule on parasitoid virulence. We propose that regulation of gene expression might be a major mechanism at the origin of intraspecific variation of virulence in immune suppressive eukaryotic parasites. Understanding this variation would improve our knowledge of the mechanisms of transcriptional evolution currently under active investigation

    Large standard deviations and logarithmic-normality: The truth about hemocyte counts in Drosophila

    No full text
    While many quantifiable biological phenomena can be described by making use of an assumption of normality in the distribution of individual values, many biological phenomena are not accurately described by the normal distribution. An unquestioned assumption of normality of distribution of possible outcomes can lead to misinterpretation of data, which could have serious consequences. Thus it is extremely important to test the validity of an assumption of normality of possible outcomes. As it turns out, the logarithmic-normal (log-normal) distribution pattern is often far more accurate in describing statistical biological phenomena. Herein I examine large samples of values for circulating blood cell (hemocyte) concentration (CHC) among both wild-type and mutant Drosophila larvae, and demonstrate in both cases that the distribution of individual values does not conform to normality, but does conform to log-normality
    • …
    corecore