3 research outputs found

    Effect of quiones and phenols on the triple-enzyme bioluminescent system with protease

    No full text
    The study addressed the effects of redox-active compounds on trypsin activity. Series of organic oxidizers (quinones) and reducers (phenols) were chosen as model redox-active compounds. Trypsin activity was quantified by bioluminescent technique. Interactions of these compounds with trypsin were studied by fluorescent and light absorption methods. Luminescence intensity decay constants in the reduced nicotinamidadeninedinucleotide (NADH): flavinmononucleotide (FMN)-oxidoreductase (R)-luciferase (L)-trypsin (T) (R + L + T) triple-enzyme system were calculated and compared in the presence of different concentrations of quinones and phenols. The triple-enzyme system was shown to be sensitive to quinones and not sensitive to phenols. It has been found that the effects produced by quinones on the coupled enzyme system (R + L) and on the trypsin molecule (T) are not related. The conclusions were extrapolated to the properties of other proteases and antiprotease

    Droplet microfluidic device for chemoenzymatic sensing.

    No full text
    The rapid detection of pollutants in water can be performed with enzymatic probes, the catalytic light-emitting activity of which decreases in the presence of many types of pollutants. Herein, we present a microfluidic system for continuous chemoenzymatic biosensing that generates emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with substrates required for the reaction. The developed chip generates "water-in-oil" emulsion droplets with a volume of 0.1 ÎĽL and a frequency of up to 12 drops per minute as well as provides the efficient mixing of reagents in droplets and their distancing. The bioluminescent signal from each individual droplet was measured by a photomultiplier tube with a signal-to-noise ratio of up to 3000/1. The intensity of the luminescence depended on the concentration of the copper sulfate with the limit of its detection of 5 ÎĽM. It was shown that bioluminescent enzymatic reactions could be carried out in droplet reactors in dispersed streams. The parameters and limitations required for the bioluminescent reaction to proceed were also studied. Hereby, chemoenzymatic sensing capabilities powered by a droplet microfluidics manipulation technique may serve as the basis for early-warning online water pollution systems
    corecore