5 research outputs found

    Genetic regulation of RNA splicing in human pancreatic islets

    No full text
    Abstract Background Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. Results We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B ,a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B ,a senescence regulator, and lncRNA MEG3 .Conclusions These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.info:eu-repo/semantics/publishe

    Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus

    Get PDF
    Mature microRNAs (miRNAs), derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting beta-cells, we have generated mice with a beta-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre(+/-) Dicer1(Delta/wt)), RIP-Cre(+/-) Dicer1(flox/flox) mice (RIP-Cre Dicer1(Delta/Delta)) developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased beta-cell mass, reduced numbers of granules within the beta-cells and reduced granule docking in adult RIP-Cre Dicer1(Delta/Delta) mice. beta-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal beta-cell development as 2-week old RIP-Cre Dicer1(Delta/Delta) mice showed ultrastructurally normal beta-cells and intact insulin secretion. In conclusion, we have demonstrated that a beta-cell specific disruption of the miRNAs network, although allowing for apparently normal beta-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development
    corecore