6 research outputs found

    GENERATION OF SEQUENCES OF STRONG ELECTRIC MONOPULSES IN NITRIDE FILMS

    Get PDF
    This paper presents theoretical investigation of the excitation of the sequences of strong nonlinear monopulses of space charge waves from input small envelope pulses with microwave carrier frequencies due to the negative differential conductivity in n-GaN and n-InN films. The stable numerical algorithms have been used for nonlinear 3D simulations. The sequences of the monopulses of the strong electric field of 3 – 10 ps durations each can be excited. The bias electric field should be chosen slightly higher than the threshold values for observing the negative differential conductivity. The doping levels should be moderate 1016 –1017 cm-3in the films of £ 2 mm thicknesses. The input microwave carrier frequencies of the exciting pulses of small amplitudes are up to 30 GHz in n-GaN films, whereas in n-InN films they are lower, up to 20 GHz. The sequences of the electric monopulses of high peak values are excited both in the uniform nitride films and in films with non-uniform conductivity. These nonlinear monopulses in the films differ from the domains of strong electric fields in the bulk semiconductors. In the films with non-uniform doping the nonlinear pulses are excited due to the inhomogeneity of the electric field near the input end of the film and the output nonlinear pulses are rather domains.

    Z-Shaped Electrothermal Microgripper Based on Novel Asymmetric Actuator

    No full text
    Based on a V-shaped microactuator with a pair of beams, modifications were made to the length and width of a microactuator to observe the effects. A theoretical approach and numerical characterization of the modified microactuator were performed. Its performance was compared to a similar microactuator with equal beam widths, and a V-shaped microactuator. The proposed microactuator, fed at 2 V, compared to the V-shaped actuator, showed a 370.48% increase in force, but a 29.8% decrease in displacement. The equivalent von Mises stress level increased (until 74.2 MPa), but was below the silicon ultimate stress. When the modified microactuator was applied to the proposed microgripper, compared to the case using a V-shaped actuator, the displacement between the jaws increased from 0.85 µm to 4.85 µm, the force from 42.11 mN to 73.61 mN, and the natural frequency from 11.36 kHz to 37.99 kHz; although the temperature increased, on average, from 42 °C up to 73 °C, it is not a critical value for many microobjects. The maximum equivalent von Mises stress was equal to 68.65 MPa. Therefore, it has been demonstrated that the new modified microactuator with damping elements is useful for the proposed microgripper of novel geometry, while a reduced area is maintained

    >

    No full text
    We propose a new structure for an integrated variable optical attenuator using InGaAsP multiple quantum wells. The principle of operation relies on the self-imaging properties of multimode interference (MMI) waveguides. The device consists of a MMI region that is 12 μm wide by 350 μm long, with input and output waveguides that are 2 μm wide. The dimensions of the MMI are calculated such that an image of the input field is produced at the output waveguide. The last statement is true as long as the phase relation between the modes in the MMI section is kept constant. Therefore, by selectively perturbing the refractive index within the MMI section, the phase relation of the modes is altered, thereby modifying the interference properties at the output of the device. We present numerical simulations using the Finite-Difference Beam Propagation Method (FD-BPM), and demonstrate that optical attenuation is possible by selectively modulating the refractive index of a narrow region within the MMI section. A dynamic range of -37 dB can be easily obtained at a wavelength of 1.55 μm with a device insertion loss of 0.3 dB. The effects of electro-absorption on the device performance are also investigated

    >

    No full text
    An analysis of out-coupling in a laser shows an optimum way of subtracting more output power by choosing an appropriate cavity arrangement from a high-power fiber laser. This investigation consisted in resolving analytically the effect of different cavities in our laser system and one thing that outcome was to know that a fiber laser can operate with high efficiency even with high losses in one end of the cavity (e.g. at an external diffraction grating), only if the feedback in the out-coupling end is low. Moreover, it was also found that is possible to improve the output power by reducing the feedback in the out-coupling end. Parameters considered in this resolved method are 0.1 NA, 10 μm diameter core, 200 μm inner-cladding diameter and 10 dB small-signal absorption. The fiber laser was doped with ytterbium and lases at 1080 nm, when pumped at 915 nm. The maximum pump power was set to 10 W

    Experimental Analysis of Tunable Optical Spectral Imaging System Using a Grating in the Pupil Function

    No full text
    Hyperspectral imaging (HSI) systems have been demonstrated as a powerful imaging technique due to their high spectral resolution. HSI can obtain the spectrum for each pixel in the image of a scene, a feature that can be exploited to design optical systems with the purpose of analyzing and characterizing objects and identifying processes within the visible electromagnetic spectrum (bandwidth). In this paper, we present an HSI system comprising a diffraction grating placed in the exit pupil of our optical configuration. The spectrum for each pixel associated with the object appears in the first order of diffraction. We used this system to characterize and tune the required spectral band of the image of the captured object obtaining more information than with an optical imaging system. Accordingly, the proposed optical system is suitable to obtain spectral and hyperspectral imaging at low cost compared to an acousto-optic system or other HSI. The scanning system captures hundreds of spectral images associated with the object, obtaining a maximum spectral resolution of 0.26nm or 260 pm for one of our configurations
    corecore