32 research outputs found

    Introduction to Univalent Foundations of Mathematics with Agda

    Full text link
    We introduce Voevodsky's univalent foundations and univalent mathematics, and explain how to develop them with the computer system Agda, which is based on Martin-L\"of type theory. Agda allows us to write mathematical definitions, constructions, theorems and proofs, for example in number theory, analysis, group theory, topology, category theory or programming language theory, checking them for logical and mathematical correctness. Agda is a constructive mathematical system by default, which amounts to saying that it can also be considered as a programming language for manipulating mathematical objects. But we can assume the axiom of choice or the principle of excluded middle for pieces of mathematics that require them, at the cost of losing the implicit programming-language character of the system. For a fully constructive development of univalent mathematics in Agda, we would need to use its new cubical flavour, and we hope these notes provide a base for researchers interested in learning cubical type theory and cubical Agda as the next step. Compared to most expositions of the subject, we work with explicit universe levels.Comment: 200 pages, extended version of Midlands Graduate School course (2019), includes Agda-verified mathematics. Sources available at github (as explained in the pdf file), but not in LaTe

    Injective types in univalent mathematics

    Get PDF
    We investigate the injective types and the algebraically injective types in univalent mathematics, both in the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the restriction map along any embedding, and algebraic injectivity is defined by a given section of the restriction map along any embedding. Under propositional resizing axioms, the main results are easy to state: (1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective sets are precisely the retracts of powersets. (2b) The algebraically injective (n+1)(n+1)-types are precisely the retracts of exponential powers of universes of nn-types. (3) The algebraically injective types are also precisely the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as a retract of any larger universe. In the absence of propositional resizing, we have similar results which have subtler statements that need to keep track of universe levels rather explicitly, and are applied to get the results that require resizing.Comment: Includes revisions after review proces

    Domain Theory in Constructive and Predicative Univalent Foundations

    Full text link
    We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott's DD_\infty model of the untyped λ\lambda-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe U1\mathcal{U}_1 and suprema of directed families with indexing type in the first universe U0\mathcal{U}_0. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott's DD_\infty again gives a large, locally small, algebraic dcpo with small directed suprema.Comment: A shorter version of this paper will appear in the proceedings of CSL 2021, volume 183 of LIPIc

    On Small Types in Univalent Foundations

    Get PDF
    We investigate predicative aspects of constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky's propositional resizing axioms or excluded middle. Our work complements existing work on predicative mathematics by exploring what cannot be done predicatively in univalent foundations. Our first main result is that nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial poset is small, then weak propositional resizing holds. It is possible to derive full propositional resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and positivity is analogous to the distinction between nonemptiness and inhabitedness. Moreover, we prove that locally small, nontrivial (directed or bounded) complete posets necessarily lack decidable equality. We prove our results for a general class of posets, which includes e.g. directed complete posets, bounded complete posets, sup-lattices and frames. Secondly, we discuss the unavailability of Zorn's lemma, Tarski's greatest fixed point theorem and Pataraia's lemma in our predicative setting, and prove the ordinal of ordinals in a univalent universe to have small suprema in the presence of set quotients. The latter also leads us to investigate the inter-definability and interaction of type universes of propositional truncations and set quotients, as well as a set replacement principle. Thirdly, we clarify, in our predicative setting, the relation between the traditional definition of sup-lattice that requires suprema for all subsets and our definition that asks for suprema of all small families.Comment: Extended version of arXiv:2102.08812. v2: Revised and expanded following referee report

    On Small Types in Univalent Foundations

    Get PDF
    We investigate predicative aspects of constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky's propositional resizing axioms or excluded middle. Our work complements existing work on predicative mathematics by exploring what cannot be done predicatively in univalent foundations. Our first main result is that nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial poset is small, then weak propositional resizing holds. It is possible to derive full propositional resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and positivity is analogous to the distinction between nonemptiness and inhabitedness. Moreover, we prove that locally small, nontrivial (directed or bounded) complete posets necessarily lack decidable equality. We prove our results for a general class of posets, which includes e.g. directed complete posets, bounded complete posets, sup-lattices and frames. Secondly, the fact that these nontrivial posets are necessarily large has the important consequence that Tarski's theorem (and similar results) cannot be applied in nontrivial instances. Furthermore, we explain that generalizations of Tarski's theorem that allow for large structures are provably false by showing that the ordinal of ordinals in a univalent universe has small suprema in the presence of set quotients. The latter also leads us to investigate the inter-definability and interaction of type universes of propositional truncations and set quotients, as well as a set replacement principle. Thirdly, we clarify, in our predicative setting, the relation between the traditional definition of sup-lattice that requires suprema for all subsets and our definition that asks for suprema of all small families

    Effects for Efficiency: Asymptotic Speedup with First-Class Control

    Get PDF
    We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count problem using a pure PCF-like base language λb\lambda_b and its extension with effect handlers λh\lambda_h. We show that λh\lambda_h admits an asymptotically more efficient implementation of generic count than any λb\lambda_b implementation. We also show that this efficiency gap remains when λb\lambda_b is extended with mutable state. To our knowledge this result is the first of its kind for control operators
    corecore