

University of Birmingham

Injective types in univalent mathematics
Escardo, Martn Hotzel

DOI:
10.1017/S0960129520000225

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Escardo, MH 2021, 'Injective types in univalent mathematics', Mathematical Structures in Computer Science.
https://doi.org/10.1017/S0960129520000225

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Jun. 2022

https://doi.org/10.1017/S0960129520000225
https://doi.org/10.1017/S0960129520000225
https://birmingham.elsevierpure.com/en/publications/2cb2f740-28b1-46a7-a7d2-b24dd5e3c0e8

Mathematical Structures in Computer Science (2020), 1–23
doi:10.1017/S0960129520000225

PAPER

Injective types in univalent mathematics
Martín Hötzel Escardó

School of Computer Science, University of Birmingham, Birmingham, UK
Email: m.escardo@cs.bham.ac.uk

(Received 4 March 2019; revised 26 August 2020; accepted 26 August 2020)

Abstract
We investigate the injective types and the algebraically injective types in univalent mathematics, both in
the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the
restriction map along any embedding, and algebraic injectivity is defined by a given section of the restric-
tion map along any embedding. Under propositional resizing axioms, the main results are easy to state:
(1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically
injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective
sets are precisely the retracts of powersets. (2b) The algebraically injective (n+ 1)-types are precisely the
retracts of exponential powers of universes of n-types. (3) The algebraically injective types are also precisely
the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as
a retract of any larger universe. In the absence of propositional resizing, we have similar results that have
subtler statements which need to keep track of universe levels rather explicitly, and are applied to get the
results that require resizing.

Keywords: Injective type; flabby type; Kan extension; partial-map classifier; univalent mathematics; univalence axiom

1. Introduction
We investigate the injective types and the algebraically injective types in univalent mathemat-
ics, both in the absence and in the presence of propositional resizing axioms. These notions of
injectivity are about the extension problem

X ⊂ j � Y

D.

�....
.....
.....
.....
.....
.....
...

f
�

The injectivity of a type D : U is defined by the surjectivity of the restriction map (−) ◦ j along any
embedding j:

�(X, Y : U)�(j : X ↪→ Y)�(f : X →D) ∃(g : Y →D), g ◦ j= f ,
so that we get an unspecified extension g of f along j. The algebraic injectivity of D is defined by a
given section (−) | j of the restriction map (−) ◦ j, following Bourke’s terminology (Bourke, 2017).
By �−�-distributivity, this amounts to

�(X, Y : U)�(j : X ↪→ Y)�(f : X →D)�(f | j : Y →D), f | j ◦ j= f ,

© The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of

https://doi.org/10.1017/S0960129520000225
https://orcid.org/0000-0002-4091-6334
mailto:m.escardo@cs.bham.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/S0960129520000225&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

2 M.H. Escardó

so that we get a designated extension f | j of f along j. Formally, in this definition, f | j can be
regarded as a variable, but we instead think of the symbol “|” as a binary operator.

For the sake of generality, we work without assuming or rejecting the principle of excluded
middle, and hence without assuming the axiom of choice either. Moreover, we show that the
principle of excluded middle holds if and only if all pointed types are algebraically injective, and,
assuming resizing, if and only if all inhabited types are injective, so that there is nothing interesting
to say about (algebraic) injectivity in its presence. That pointness and inhabitedness are needed is
seen by considering the embedding 0 ↪→ 1.

Under propositional resizing principles (Univalent Foundations Program, 2013)
(Definitions 25 and 52 below), the main results are easy to state:

1. Injectivity is equivalent to the propositional truncation of algebraic injectivity.
(This can be seen as a form of choice that just holds, as it moves a propositional truncation
inside a �-type to outside the �-type, and may be related to Kenney 2011.)

2. The algebraically injective types are precisely the retracts of exponential powers of universes.
Here by an exponential power of a type B we mean a type of the form A→ B, also written BA.
In particular,
(a) The algebraically injective sets are precisely the retracts of powersets.
(b) The algebraically injective (n+ 1)-types are precisely retracts of exponential powers of the

universes of n-types.
Another consequence is that any universe is embedded as a retract of any larger universe.

3. The algebraically injective types are also precisely the underlying objects of the algebras of the
partial-map classifier.

In the absence of propositional resizing, we have similar results that have subtler statements that
need to keep track of universe levels rather explicitly. Most constructions developed in this paper
are in the absence of propositional resizing. We apply them, with the aid of a notion of algebraic
flabbiness, which is related to the partial-map classifier, to derive the results that rely on resizing
mentioned above.

2. Underlying Formal System
Our handling of universes has a model in ∞-toposes following Shulman (2019). It differs from
that of the HoTT book (Univalent Foundations Program, 2013), and Coq (Coq Development
Team), in that we do not assume cumulativity, and it agrees with that of Agda (Agda Community).

2.1 Our univalent type theory
Our underlying formal system can be considered to be a subsystem of that used in
UniMath (Voevodsky, 2015).

1. We work within an intensional Martin-Löf type theory with types 0 (empty type), 1 (one-
element type with � : 1), N (natural numbers), and type formers + (binary sum), � (product),
� (sum) and Id (identity type), and a hierarchy of type universes ranged over by U , V ,W , T ,
closed under them in a suitable sense discussed below.

We take these as required closure properties of our formal system, rather than as an
inductive definition.

2. We assume a universe U0, and for each universe U we assume a successor universe U+ with
U : U+, and for any two universes U , V a least upper bound U � V . We stipulate that we have
U0 � U = U and U � U+ = U+ definitionally, and that the operation (−) � (−) is definitionally

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 3

idempotent, commutative, and associative, and that the successor operation (−)+ distributes
over (−) � (−) definitionally.

3. We do not assume that the universes are cumulative on the nose, in the sense that from X : U
we would be able to deduce that X : U � V for any V , but we also do not assume that they are
not. However, from the assumptions formulated below, it follows that for any two universes
U , V there is a map liftU ,V : U → U � V , for instance, X �→ X + 0V , which is an embedding
with lift X 	 X if univalence holds (we cannot write the identity type lift X = X, as the left-
and right-hand sides live in the different types U and U � V , which are not (definitionally) the
same in general).

4. We stipulate that we have copies 0U and 1V of the empty and singleton types in each universe
U (with the subscripts often elided).

5. We stipulate that if X : U and Y : V , then X + Y : U � V .
6. We stipulate that if X : U and A : X → V then �XA : U � V . We abbreviate this product type

as �A when X can be inferred from A, and sometimes we write it verbosely as �(x : X),A x.
In particular, for types X : U and Y : V , we have the function type X → Y : U � V .

7. The same type stipulations as for �, and the same grammatical conventions apply to the sum
type former �.

In particular, for types X : U and Y : V , we have the cartesian product X × Y : U � V .
8. We assume the η rules for � and �, namely that f = λx, f x holds definitionally for any f in a

�-type and that z = (pr1 z, pr2 z) holds definitionally for any z in a � type, where pr1 and pr2
are the projections.

9. For a type X and points x, y : X, the identity type IdX x y is abbreviated as Id x y and often
written x=X y or simply x= y.

The elements of the identity type x= y are called identifications or paths from x to y.
10. Whenmaking definitions, definitional equality is written “def=”.When it is invoked, it is written,

for example, “x= y definitionally.” This is consistent with the fact that any definitional equality
x= y gives rise to an element of the identity type x= y and should therefore be unambiguous.

11. When we say that something is the case by construction, this means we are expanding
definitional equalities.

12. We tacitly assume univalence (Univalent Foundations Program, 2013), which gives function
extensionality (pointwise equal functions are equal) and propositional extensionality (logically
equivalent subsingletons are equal).

13. We work with the existence of propositional, or subsingleton, truncations as an assumption,
also tacit. The HoTT book (Univalent Foundations Program, 2013), instead, defines type for-
mation rules for propositional truncation as a syntactical construct of the formal system. Here
we take propositional truncation as an axiom for any pair of universes U , V :

�(X : U)�(‖X‖ : U),
‖X‖ is a proposition× (X → ‖X‖)

× (
�(P : V), P is a proposition→ (X → P)→ ‖X‖ → P

)
.

We write | x | for the insertion of x : X into the type ‖X‖ by the assumed function X → ‖X‖.
We also denote by f̄ the function ‖X‖ → P obtained by the given “elimination rule” (X →
P)→ ‖X‖ → P applied to a function f : X → P. The universe U is that of types we truncate,
and V is the universe where the propositions we eliminate into live. Because the existence
of propositional truncations is an assumption rather than a type formation rule, its so-called
“computation” rule

f̄ | x | = fx
does not hold definitionally, of course, but is established as a derived identification, by the
definition of proposition.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

4 M.H. Escardó

2.2 Terminology and notation
We assume that the readers are already familiar with the notions of univalent mathematics, for
example, from the HoTT book (Univalent Foundations Program, 2013). The purpose of this sec-
tion is to establish terminology and notation only, particularly regarding our modes of expression
that diverge from the HoTT book.

1. A type X is a singleton, or contractible, if there is a designated c : X with x= c for all x : X:
X is a singleton def= �(c : X),�(x : X), x= c.

2. A proposition, or subsingleton, or truth value, is a type with at most one element, meaning that
any two of its elements are identified:

X is a proposition def= �(x, y : X), x= y.

3. By an unspecified element of a type X we mean a (specified) element of its propositional
truncation ‖X‖.

We say that a type is inhabited if it has an unspecified element.
If the type X codifies a mathematical statement, we say that X holds in an unspecified way

to mean the assertion ‖X‖. For example, if we say that the type A is a retract of the type B in an
unspecified way, what we mean is that ‖A is a retract of B‖.

4. Phrases such as “there exists,” “there is,” “there is some,” and “for some” indicate a proposition-
ally truncated �, and symbolically we write

(∃(x : X),A x) def= ‖�(x : X),A x‖ .
For emphasis, we may say that there is an unspecified x : X with A x.

When the meaning of existence is intended to be (untruncated) �, we use phrases such as
“there is a designated,” “there is a specified,” “there is a distinguished,” “there is a given,” “there
is a chosen,” “for some chosen,” and “we can find.”

The statement that there is a unique x : X with A x amounts to the assertion that the type
�(x : X),A x is a singleton:

(∃!(x : X),A x) def= the type �(x : X),A x is a singleton.

That is, there is a unique pair (x, a) with x : X and a :A x. This does not need to be explicitly
propositionally truncated, because singleton types are automatically propositions.

The statement that there is at most one x : X with A x amounts to the assertion that the type
�(x : X),A x is a subsingleton (so we have at most one pair (x, a) with x : X and a :A x).

5. We often express a type of the form�(x : X),A x by phrases such as “the type of x : X withA x”.
For example, if we define the fiber of a point y : Y under a function f : X → Y to be the type

f−1(y) of points x : X that are mapped by f to a point identified with y, it should be clear from
the above conventions that we mean

f−1(y) def= �(x : X), f (x)= y.

Also, with the above terminological conventions, saying that the fibers of f are singletons (i.e.,
that f is an equivalence) amounts to the same thing as saying that for every y : Y there is a
unique x : X with f (x)= y.

Similarly, we say that such an f is an embedding if for every y : Y there is at most one
x : X with f (x)= y. In passing, we remark that, in general, this is stronger than f being left-
cancellable, but coincides with left-cancellability if the type Y is a set (its identity types are all
subsingletons).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 5

6. We sometimes use the mathematically more familiar “maps to” notation “ �→” instead of type-
theoretical lambda notation “λ” for defining nameless functions.

7. Contrarily to an existing convention among some practitioners, we will not reserve the word
is for mathematical statements that are subsingleton types. For example, we say that a type is
algebraically injective to mean that it comes equipped with suitable data, or that a type X is a
retract of a type Y to mean that there are designated functions s : X → Y and r : Y → X, and a
designated pointwise identification r ◦ s∼ id.

8. Similarly, we do not reserve the words theorem, lemma, corollary, and proof for constructions
of elements of subsingleton types, and all our constructions are indicated by the word proof,
including the construction of data or structure.

Because proposition is a semantical rather than syntactical notion in univalent mathemat-
ics, we often have situations when we know that a type is a proposition only much later in the
mathematical development. An example of this is univalence. To know that this is a proposi-
tion, we first need to state and prove many lemmas, and even if these lemmas are propositions
themselves, we will not know this at the time they are stated and proved. For instance, knowing
that the notion of being an equivalence is a proposition requires function extensionality, which
follows from univalence. Then this is used to prove that univalence is a proposition.

2.3 Formal development
A computer-aided formal development of the material of this paper has been performed in
Agda (Agda Community), occasionally preceded by pencil and paper scribbles, but mostly directly
in the computer with the aid of Agda’s interactive features. This paper is an unformalization of that
development, which is included as supplementary material. We emphasize that not only num-
bered statements in this paper have formal counterparts but also the comments in passing, and
that the formal version has more information than what we choose to report here.

We have two versions. One of them (Escardó, 2019b) is in blackboard style, with the ideas
in the order they have come to our mind over the years, in a fairly disorganized way, and with
local assumptions of univalence, function extensionality, propositional extensionality, and propo-
sitional truncation. The other one (Escardó, 2019a) is in article style, with univalence and existence
of propositional truncations as global assumptions, and functional and propositional extension-
ality derived from univalence. This second version follows closely this paper (or rather this paper
follows closely that version), organized in a way more suitable for dissemination, repeating the
blackboard definitions, in a definitionally equal way, and reproducing the proofs and construc-
tions that we consider to be relevant while invoking the blackboard for the routine, unenlightening
ones. The blackboard version also has additional information that we have chosen not to include
in the article version of the Agda development or this paper.

An advantage of the availability of a formal version is that, whatever steps we have omitted here
because we considered them to be obvious or routine, can be found there, in case of doubt.

3. Injectivity with Universe Levels
As discussed in the introduction, in the absence of propositional resizing we are forced to keep
track of universe levels rather explicitly.

Definition 1. We say that a type D in a universeW is U , V-injective to mean
�(X : U)�(Y : V)�(j : X ↪→ Y)�(f : X →D), ∃(g : Y →D), g ◦ j∼ f ,

and that it is algebraically U , V-injective to mean
�(X : U)�(Y : V)�(j : X ↪→ Y)�(f : X →D), �(f | j : Y →D), f | j ◦ j∼ f .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

6 M.H. Escardó

Notice that, because we have function extensionality, pointwise equality ∼ of functions is equiv-
alent to equality, and hence equal to equality by univalence. But it is more convenient for the
purposes of this paper to work with pointwise equality in these definitions.

4. The Algebraic Injectivity of Universes
Let U , V ,W be universes, X : U and Y : V be types, and f : X →W and j : X → Y be given
functions, where j is not necessarily an embedding. We define functions f ↓ j and f ↑ j of type
Y → U � V �W by

(f ↓ j) y def= �(w : j−1(y)), f (pr1 w),

(f ↑ j) y def= �(w : j−1(y)), f (pr1 w).

Lemma 2. If j is an embedding, then both f ↓ j and f ↑ j are extensions of f along j up to equivalence,
in the sense that

(f ↓ j ◦ j) x 	 fx 	 (f ↑ j ◦ j) x,
and hence extensions up to equality if W is taken to be U � V , by univalence.

Notice that if W is kept arbitrary, then univalence cannot be applied because equality is defined
only for elements of the same type.

Proof. Because a sum indexed by a subsingleton is equivalent to any of its summands, and simi-
larly a product indexed by a subsingleton is equivalent to any of its factors, and because a map is
an embedding precisely when its fibers are all subsingletons.

We record this corollary:

Lemma 3. The universe U � V is algebraically U , V-injective, in at least two ways.

And in particular, for example, U is U , U-injective, but of course U does not live in U and does
not even have a copy in U . For the following, we say that y : Y is not in the image of j to mean
that j x �= y for all x : X.

Proposition 4. For y : Y not in the image of j, we have (f ↓ j) y	 0 and (f ↑ j) y	 1.

With excluded middle, this would give that the two extensions have the same sum and product as
the non-extended map, respectively, but excluded middle is not needed, as it is not hard to see:

Remark 5. We have canonical equivalences �f 	 �(f ↓ j) and �f 	 �(f ↑ j).

Notice that the functions f , f ↓ j and f ↑ j, being universe valued, are type families, and hence
the notations �f , �(f ↓ j), �f and �(f ↑ j) are just particular cases of the notations for the sum
and product of a type family.

The two extensions are left and right Kan extensions in the following sense, without the need
to assume that j is an embedding. First, a map f : X → U , when X is viewed as an∞-groupoid and
hence an ∞-category, and when U is viewed as the ∞-generalization of the category of sets, can
be considered as a sort of ∞-presheaf, because its functoriality is automatic: If we define

f [p] def= transport f p

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 7

of type f x→ f y for p : Id x y, then for q : Id y z we have
f [reflx]= idf x, f [p • q]= f [q] ◦ f [p].

Then we can consider the type of transformations between such ∞-presheaves f : X →W and
f ′ : X →W ′ defined by

f � f ′ def= �(x : X), f x→ f ′x,
which are automatically natural in the sense that for all τ : f � f ′ and p : Id x y,

τy ◦ f [p]= f ′[p] ◦ τx.
It is easy to check that we have the following canonical transformations:

Remark 6. f ↓ j � f ↑ j if j is an embedding.

It is also easy to see that, without assuming j to be an embedding,

1. f � f ↓ j ◦ j,
2. f ↑ j ◦ j � f .

These are particular cases of the following constructions, which are evident and canonical, even if
they may be a bit laborious:

Remark 7. For any g : Y → T , we have canonical equivalences

1. (f ↓ j � g)	 (f � g ◦ j), that is, f ↓ j is a left Kan extension,
2. (g � f ↑ j)	 (g ◦ j � f), that is, f ↑ j is a right Kan extension.

We also have that the left and right Kan extension operators along an embedding are themselves
embeddings, as we now show.

Theorem 8. For any types X, Y : U and any embedding j : X → Y, the left Kan extension operator
along j is an embedding of the function type X → U into the function type Y → U .

Proof. Define s : (X → U)→ (Y → U) and r : (Y → U)→ (X → U) by

s f def= f ↓ j,

r g def= g ◦ j.
By function extensionality, we have that r(s f)= f , because s is a pointwise-extension oper-
ator as j is an embedding, and by construction we have that s(r g)= (g ◦ j) ↓ j. Now define
κ : �(g : Y → U), s(r g) � g by

κ g y ((x, p), C) def= transport g p C
for all g : Y → U , y : Y , x : X, p : j x= y and C : g(j x), so that transport g p C has type g y, and
consider the type

M def= �(g : Y → U)�(y : Y), the map κ g y : s(r g) y→ g y is an equivalence.
Because the notion of being an equivalence is a proposition and because products of propositions
are propositions, the first projection

pr1 :M → (Y → U)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

8 M.H. Escardó

is an embedding. To complete the proof, we show that there is an equivalence φ : (X → U)→M
whose composition with this projection is s, so that s, being the composition of two embeddings,
is itself an embedding. We construct φ and its inverse γ by

φ f def= (s f , ε f),

γ (g, e) def= r g,

where ε f is a proof that the map κ (s f) y is an equivalence for every y : Y , to be constructed
shortly. Before we know this construction, we can see that γ (φ f)= r(s f)= f so that γ ◦ φ ∼ id,
and that φ(γ (g, e))= (s(rg), ε(rg)). To check that the pairs (s(rg), ε(rg)) and (g, e) are equal and
hence φ ◦ γ ∼ id, it suffices to check the equality of the first components, because the second
components live in subsingleton types. But e y says that s(r g) y	 g y for any y : Y , and hence
by univalence and function extensionality, s(r g)= g. Thus the functions φ and γ are mutually
inverse. Now, pr1 ◦ φ = s definitionally using the η-rule for �, so that indeed s is the composition
of two embeddings, as we wanted to show.

It remains to show that the map κ (s f) y : s(f y)→ s(r(s f)) y is indeed an equivalence. The
domain and codomain of this function amount, by construction, to respectively

A def= �(t : j−1(y)),�(w : j−1(j(pr1 t))), f (pr1 w)

B def= �(w : j−1(y)), f (pr1 w).

We construct an inverse δ : B→A by

δ ((x, p), C) def= ((x, p), (x, reflj x), C).
It is routine to check that the functions κ (s f) y and δ are mutually inverse, which concludes the
proof.

The proof of the theorem below follows the same pattern as the previous one with some por-
tions “dualized” in some sense, and so we are slightly more economic with its formulation this
time.

Theorem 9. For any types X, Y : U and any embedding j : X → Y, the right Kan extension operation
along j is an embedding of the function type X → U into the function type Y → U .

Proof. Define s : (X → U)→ (Y → U) and r : (Y → U)→ (X → U) by

s f def= f ↑ j,

r g def= g ◦ j.
By function extensionality, we have that r(s f)= f , and, by construction, s(r g)= (g ◦ j) ↑ j. Now
define κ : �(g : Y → U), g � s(r g) by

κ g y C(x, p) def= transport g p−1 C
for all g : Y → U , y : Y , C : g y, x : X, p : j x= y, so that transport g p−1 C has type g(j x), and
consider the type

M def= �(g : Y → U)�(y : Y), the map κ g y : g y→ s(r g) y is an equivalence.
Then the first projection pr1 :M → (Y → U) is an embedding. To complete the proof, we show
that there is an equivalence φ : (X → U)→M whose composition with this projection is s, so that
it follows that s is an embedding. We construct φ and its inverse γ by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 9

φ f def= (s f , ε f),

γ (g, e) def= r g,

where ε f is a proof that the map κ (sf) y is an equivalence for every y : Y , so that φ and γ are
mutually inverse by the argument of the previous proof.

To prove that the map κ (s f) y : s(r(s f)) y→ s(f y) is an equivalence, notice that its domain
and codomain amount, by construction, to respectively

A def= �(w : j−1(y)), f (pr1 w),

B def= �(t : j−1(y)),�(w : j−1(j(pr1 t))), f (pr1 w).

We construct an inverse δ : B→A by

δ C (x, p) def= C(x, p)(x, reflj x).

It is routine to check that the functions κ (s f) y and δ are mutually inverse, which concludes the
proof.

The left and right Kan extensions trivially satisfy f ↓ id∼ f and f ↑ id∼ f because the identity
map is an embedding, by the extension property, and so are contravariantly functorial in view of
the following.

Remark 10. For types X : U , Y : V and Z :W , and functions j : X → Y , k : Y → Z and f : X →
U � V �W , we have canonical identifications

f ↓ (k ◦ j) ∼ (f ↓ j) ↓k,
f ↑ (k ◦ j) ∼ (f ↑ j) ↑k.

Proof. This is a direct consequence of the canonical equivalences

(�(t : �B), C t)	 (�(a :A)�(b : B a), C(a, b))
(�(t : �B), C t)	 (�(a :A)�(b : B a), C(a, b))

for arbitrary universes U , V ,W and A : U , B :A→ V , and C : � B→W .

The above and the following are applied in work on compact ordinals (reported in our
repository Escardó 2019c).

Remark 11. For types X : U and Y : V , and functions j : X → Y , f : X →W and f ′ : X →W ′, if the
type f x is a retract of f ′ x for any x : X, then the type (f ↑ j) y is a retract of (f ′ ↑ j) y for any y : Y .

The construction is routine, and presumably can be performed for left Kan extensions too, but we
have not paused to check this.

5. Constructions with Algebraically Injective Types
Algebraic injectives are closed under retracts:

Lemma 12. If a type D in a universeW is algebraically U , V-injective, then so is any retract D′ :W ′
of D in any universeW ′.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

10 M.H. Escardó

In particular, any type equivalent to an algebraically injective type is itself algebraically injective,
without the need to invoke univalence.

Proof.

X
j � Y

D′

f | j

�....
.....
.....
.....
.....
.....
..

f

�

D.

s

�

r

�
(s ◦ f) | j

�

s ◦ f

�
For a given section–retraction pair (s, r), the construction of the extension operator for D′ from
that of D is given by f | j def= r ◦ ((s ◦ f) | j).

Lemma 13. The product of any family Da of algebraically U , V-injective types in a universeW , with
indices a in a type A of any universe T , is itself algebraically U , V-injective.

In particular, if a type D in a universeW is algebraically U , V-injective, then so is any exponential
power A→D : T �W for any type A in any universe T .

Proof. We construct the extension operator (−) | (−) of the product �D : T �W in a pointwise
fashion from the extension operators (−) |a (−) of the algebraically injective typesDa: For f : X →
�D, we let f | j : Y → �D be

(f | j) y def= a �→ ((x �→ f x a) |a j) y.

Lemma 14. Every algebraically U , V-injective type D :W is a retract of any type Y : V in which it is
embedded into.

Proof.

D ⊂ j � Y

D.

r def= id | j

�....
.....
.....
.....
.....
.....
...

id
�

We just extend the identity function along the embedding to get the desired retraction r.

The following is a sort of ∞-Yoneda embedding:

Lemma 15. The identity type former IdX of any type X : U is an embedding of the type X into the
type X → U .

Proof. To show that the Id-fiber of a given A : X → U is a subsingleton, it suffices to show that if
it is pointed then it is a singleton. So let (x, p) : �(x : X), Id x=A be a point of the fiber. Applying

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 11

the operator �, seen as a map of type (X → U)→ U , to the identification p : Id x=A, we get an
identification

ap � p : �(Id x)= �A,
and hence, being equal to the singleton type �(Id x), the type �A is itself a singleton. Hence we
have

A x 	 Id x � A by the Yoneda Lemma (Rijke, 2012),
= �(y : X), Id x y→A y by definition of � ,
	 �(y : X), Id x y	A y because �A is a singleton (Yoneda corollary),
	 �(y : X), Id x y=A y by univalence,
	 Id x=A by function extensionality.

So by a second application of univalence we get A x= (Id x=A). Hence, applying � on both
sides, we get �A= (�(x : X), Id x=A). Therefore, because the type �A is a singleton, so is the
fiber �(x : X), Id x=A of A.

Lemma 16. If a type D in a universe U is algebraically U , U+-injective, then D is a retract of the
exponential power D→ U of U .

Proof.

D ⊂ Id � (D→ U)

D.

r def= id | Id

�...
.....
.....
.....
.....
.....
..

id
�

This is obtained by combining the previous two constructions, using the fact that D→ U lives in
the successor universe U+.

6. Algebraic Flabbiness and Resizing Constructions
We now discuss resizing constructions that do not assume resizing axioms. The above results,
when combined together in the obvious way, almost give directly that the algebraically injective
types are precisely the retracts of exponential powers of universes, but there is a universe mis-
match. Keeping track of the universes to avoid the mismatch, what we get instead is a resizing
construction without the need for resizing axioms:

Lemma 17. Algebraically U , U+-injective types D : U are algebraically U , U-injective too.

Proof. By the above constructions, we first get that D, being algebraically U , U+-injective, is a
retract ofD→ U . But then U is algebraically U , U-injective, and, being a power of U , so isD→ U .
Finally, being a retract of D→ U , we have that D is algebraically U , U-injective.

This is resizing down and so is not surprising. Of course, such a construction can be performed
directly by considering an embedding U → U+, but the idea is to generalize it to obtain further
resizing-for-free constructions, and, later, resizing-for-a-price constructions. We achieve this by
considering a notion of flabbiness as data, rather than as property as in the 1-topos literature
(see, e.g., Blechschmidt 2018). The notion of flabbiness considered in topos theory is defined with

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

12 M.H. Escardó

truncated �, that is, the existential quantifier ∃ with values in the subobject classifier �. We refer
to the notion defined with untruncated � as algebraic flabbiness.

Definition 18. We say that a type D :W is algebraically U-flabby if
�(P : U), if P is a subsingleton, then �(f : P →D)�(d :D)�(p : P), d = f p.

This terminology is more than a mere analogy with algebraic injectivity: notice that flabbiness and
algebraic flabbiness amount to simply injectivity and algebraic injectivity with respect to the class
of embeddings P → 1 with P ranging over subsingletons:

P ⊂ � 1

D.
�....

.....
.....
.....
.....
.....
...

f
�

Notice also that an algebraically flabby type D is pointed, by considering the case when f is the
unique map 0→D.

Lemma 19. If a type D in the universe W is algebraically U , V-injective, then it is algebraically
U-flabby.

Proof. Given a subsingleton P : U and a map f : P →D, we can take its extension f | ! : 1→D
along the unique map ! : P → 1, because it is an embedding, and then we let d def= (f | !) �, and the
extension property gives d = f p for any p : P.

The interesting thing about this is that the universe V is forgotten, and then we can put any
other universe below U back, as follows.

Lemma 20. If a type D in the universeW is algebraically U � V-flabby, then it is also algebraically
U , V-injective.

Proof. Given an embedding j : X → Y of types X : U and Y : V , a map f : X →D and a point y : Y ,
in order to construct (f | j) y we consider the map fy : j−1(y)→D defined by (x, p) �→ f x. Because
the fiber j−1(y) : U � V is a subsingleton as j is an embedding, we can apply algebraic flabbiness
to get dy :D with dy = fy(x, p) for all (x, p) : j−1(y). By the construction of fy and the definition of
fiber, this amounts to saying that for any x : X and p : j x= y, we have dy = f x. Therefore we can
take

(f | j) y def= dy,

because we then have

(f | j)(j x)= dj x = fj x(x, reflj x)= f x

for any x : X, as required.
We then get the following resizing construction by composing the above two conversions between
algebraic flabbiness and injectivity:

Lemma 21. If a type D in the universe W is algebraically (U � T), V-injective, then it is also
algebraically U , T -injective.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 13

In particular, algebraic U , V-injectivity gives algebraic U , U- and U0, U-injectivity. So this is no
longer necessarily resizing down, by taking V to be, for example, the first universe U0.

7. Injectivity of Subuniverses
We now apply algebraic flabbiness to show that any subuniverse closed under subsingletons and
under sums, or alternatively under products, is also algebraically injective.

Definition 22. By a subuniverse of U we mean a projection � A→ U with A : U → T
subsingleton-valued and the universe T arbitrary. By a customary abuse of language, we also some-
times refer to the domain of the projection as the subuniverse. Closure under subsingletons means
that A P holds for any subsingleton P : U . Closure under sums amounts to saying that if X : U satis-
fies A and every Y x satisfies A for a family Y : X → U , then so does � Y. Closure under products is
defined in the same way with � in place of �.

Notice that A being subsingleton-valued is precisely what is needed for the projection to be an
embedding, and that all embeddings are of this form up to equivalence (more precisely, every
embedding of any two types is the composition of an equivalence into a sum type followed by the
first projection).

Lemma 23. Any subuniverse of U which is closed under subsingletons and sums, or alternatively
under subsingletons and products, is algebraically U-flabby and hence algebraically U , U-injective.

Proof. Let � A be a subuniverse of U , let P : U be a subsingleton and f : P → � A be given. Then
define

(1) X def= �(pr1 ◦ f) or (2) X def= �(pr1 ◦ f)
according to whether we have closure under sums or products. Because P being a subsingleton
satisfiesA and because the values of the map pr1 ◦ f : P → U satisfyA by definition of subuniverse,
we have a :AX by the sum or product closure property, and d def= (X, a) has type� A. To conclude
the proof, we need to show that d = f p for any p : P. Because the second component a lives in a
subsingleton by definition of subuniverse, it suffices to show that the first components are equal,
that is, that X = pr1 (f p). But this follows by univalence, because a sum indexed by a subsingleton
is equivalent to any of summands, and a product indexed by a subsingleton is equivalent to any of
its factors.

We index n-types from n= −2 as in the HoTT book, where the −2-types are the singletons.
We have the following as a corollary.

Theorem 24. The subuniverse of n-types in a universe U is algebraically U-flabby, in at least two
ways, and hence algebraically U , U-injective.

Proof. We have a subuniverse because the notion of being an n-type is a proposition. For n= −2,
the subuniverse of singletons is itself a singleton, and hence trivially injective. For n> −2, the
n-types are known to be closed under subsingletons and both sums and products.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

14 M.H. Escardó

In particular:

1. The type �U of subsingletons in a universe U is algebraically U , U-injective.
(Another way to see that �U is algebraically injective is that it is a retract of the universe
by propositional truncation. The same would be the case for n-types if we were assuming
n-truncations, which we are not.)

2. Powersets, being exponential powers of �U , are algebraically U , U-injective.

An anonymous referee suggested the following additional examples: (i) The subuniverse of subfi-
nite types, that is, subtypes of types for which there is an unspecified equivalence with Fin (n) for
some n. This subuniverse is closed under both � and �. (ii) Reflective subuniverses, as they are
closed under �. (iii) Any universe U seen as a subuniverse of U � V .

8. Algebraic Flabbiness with Resizing Axioms
Returning to size issues, we now apply algebraic flabbiness to show that propositional resizing
gives unrestricted algebraic injective resizing.

Definition 25. The propositional resizing principle, from U to V , that we consider here says that
every proposition in the universe U has an equivalent copy in the universe V . By propositional resiz-
ing without qualification, we mean propositional resizing between any of the universes involved in
the discussion.

This is consistent because it is implied by excluded middle, but, as far as we are aware, there
is no known computational interpretation of this axiom. A model in which excluded middle fails
but propositional resizing holds is given by Shulman (2015).

We begin with the following construction, which says that algebraic flabbiness is universe
independent in the presence of propositional resizing:

Lemma 26. If propositional resizing holds, then the algebraic V-flabbiness of a type in any universe
gives its algebraic U-flabbiness.

Proof. LetD :W be a type in any universeW , let P : U be a proposition and f : P →D. By resizing,
we have an equivalence β :Q→ P for a suitable propositionQ : V . Then the algebraic V-flabbiness
of D gives a point d :D with d = (f ◦ β) q for all q :Q, and hence with d = f p for all p : P, because
we have p= β q for q= α p where α is a quasi-inverse of β , which establishes the algebraic U-
flabbiness of D.

And from this it follows that algebraic injectivity is also universe independent in the presence
of propositional resizing: we convert back-and-forth between algebraic injectivity and algebraic
flabbiness.

Lemma 27. If propositional resizing holds, then for any type D in any universe W , the algebraic
U , V-injectivity of D gives its algebraic U ′, V ′-injectivity for any universes U ′ and V ′.

Proof. We first get the U-flabbiness of D by Lemma 19, and then its U ′ � V ′-flabbiness by
Lemma 27, and finally its algebraic U ′, V ′-injectivity by Lemma 20.

As an application of this and of the algebraic injectivity of universes, we get that any universe
is a retract of any larger universe. We remark that for types that are not sets, sections are not
automatically embeddings (Shulman, 2016). But we can choose the retraction so that the section
is an embedding in our situation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 15

Lemma 28. We have an embedding of any universe U into any larger universe U � V .

Proof. For example, we have the embedding given by X �→ X + 0V . We do not consider an argu-
ment that this is indeed an embedding to be entirely routine without a significant amount of
experience in univalent mathematics, even if this may seem obvious. Nevertheless, it is certainly
safe to leave it as a challenge to the reader, and a proof can be found in Escardó (2019a) in case of
doubt.

Theorem 29. If propositional resizing holds, then any universe U is a retract of any larger universe
U � V with a section that is an embedding.

Proof. The universe U is algebraically U , U-injective by Lemma 3, and hence it is algebraically
U+, (U � V)+-injective by Lemma 27, which has the right universe assignments to apply the con-
struction Lemma 16 that gives a retraction from an embedding of an injective type into a larger
type, in this case the embedding of the universe U into the larger universe U � V constructed in
Lemma 28.

As mentioned above, we almost have that the algebraically injective types are precisely the
retracts of exponential powers of universes, up to a universe mismatch. This mismatch is side-
stepped by propositional resizing. The following is one of the main results of this paper:

Theorem 30 (First characterization of algebraic injectives). If propositional resizing holds, then
a type D in a universe U is algebraically U , U-injective if and only if D is a retract of an exponential
power of U with exponent in U .

We emphasize that this is a logical equivalence “if and only if ” rather than an ∞-groupoid equiv-
alence “	”. More precisely, the theorem gives two constructions in opposite directions. So this
characterizes the types that can be equipped with algebraic-injective structure.

Proof. (⇒): Because D is algebraically U , U-injective, it is algebraically U , U+-injective by resiz-
ing, and hence it is a retract of D→ U because it is embedded into it by the identity type former,
by taking the extension of the identity function along this embedding.

(⇐): IfD is a retract of X → U for some given X : U , then, because X → U , being an exponen-
tial power of the algebraically U , U-injective type U , is algebraically U , U-injective, and hence so
is D because it is a retract of this power.

We also have that any algebraically injective (n+ 1)-type is a retract of an exponential power
of the universe of n-types. We establish something more general first.

Lemma 31. Under propositional resizing, for any subuniverse � A of a universe U closed under
subsingletons, we have that any algebraically U , U-injective type X : U whose identity types x=X x′
all satisfy the property A is a retract of the type X → � A.

Proof. Because the first projection j : � A→ U is an embedding by the assumption, so is the map
k def= j ◦ (−) : (X → �A)→ (X → U) by a general property of embeddings. Now consider the map
l : X → (X → � A) defined by x �→ (x′ �→ (x= x′, p x x′)), where p x x′ :A(x= x′) is given by the
assumption. We have that k ◦ l= IdX by construction. Hence l is an embedding because l and IdX
are, where we are using the general fact that if g ◦ f and g are embeddings then so is the factor f .
But X, being algebraically U , U-injective by assumption, is algebraically U , (U+ � T)-injective
by resizing, and hence so is the exponential power X → � A, and therefore we get the desired
retraction by extending its identity map along l.

Using this, we get the following as an immediate consequence.
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

16 M.H. Escardó

Theorem 32 (Characterization of algebraic injective (n+ 1)-types). If propositional resizing
holds, then an (n+ 1)-type D in U is algebraically U , U-injective if and only if D is a retract of
an exponential power of the universe of n-types in U , with exponent in U .

Corollary 33. The algebraically injective sets in U are the retracts of powersets of (arbitrary) types
in U , assuming propositional resizing.

Notice that the powerset of any type is a set, because �U is a set and because sets (and more
generally n-types) form an exponential ideal.

9. Injectivity in Terms of Algebraic Injectivity in the Absence of Resizing
We now compare injectivity with algebraic injectivity. The following observation follows from the
fact that retractions are surjections:

Lemma 34. If a type D in a universeW is algebraically U , V-injective, then it is U , V-injective

The following observation follows from the fact that propositions are closed under products.

Lemma 35. Injectivity is a proposition.

But of course algebraic injectivity is not. From this we immediately get the following by the
universal property of propositional truncation:

Lemma 36. For any type D in a universe W , the truncation of the algebraic U , V-injectivity of D
gives its U , V-injectivity.

In order to relate injectivity to the propositional truncation of algebraic injectivity in the other
direction, we first establish some facts about injectivity that we already proved for algebraic injec-
tivity. These facts cannot be obtained by reduction (in particular, products of injectives are not
necessarily injective, in the absence of choice, but exponential powers are).

Lemma 37. AnyW , V-injective type D in a universeW is a retract of any type in V it is embedded
into, in an unspecified way.

Proof. Given Y : V with an embedding j :D→ Y , by theW , V-injectivity of D there is an unspec-
ified r : Y →D with r ◦ j∼ id. Now, if there is a specified r : Y →D with r ◦ j∼ id then there is a
specified retraction. Therefore, by the functoriality of propositional truncation on objects applied
to the previous statement, there is an unspecified retraction.

Lemma 38. If a type D′ : U ′ is a retract of a type D : U , then the W , T -injectivity of D implies that
of D′.

Proof. Let r :D→D′ and s :D′ →D be the given section retraction pair, and, to show that D′
is W , T -injective, let an embedding j : X → Y and a function f : X →D′ be given. By the injec-
tivity of D, we have some unspecified extension f ′ : Y →D of s ◦ f : X →D. If such a designated
extension is given, then we get the designated extension r ◦ f ′ of f . By the functoriality of propo-
sitional truncation on objects and the previous two statements, we get the required, unspecified
extension.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 17

The universe assignments in the following are probably not very friendly, but we are aiming for
maximum generality.

Lemma 39. If a type D :W is (U � T), (V � T)-injective, then the exponential power A→D is
U , V-injective for any A : T .

Proof. For a given embedding j : X → Y and a given map f : X → (A→D), take the exponential
transpose g : X ×A→D of f , then extend it along the embedding j× id : X ×A→ Y ×A to get
g′ : Y ×A→D and then back-transpose to get f ′ : Y → (A→D), and check that this construction
of f ′ does give an extension of f along j. For this, we need to know that if j is an embedding then
so is j× id, but this is not hard to check. The result then follows by the functoriality-on-objects of
the propositional truncation.

Lemma 40. If a type D : U is U , U+ injective, then it is a retract of D→ U in an unspecified way.

Proof. This is an immediate consequence of Lemma 37 and the fact that the identity type former
IdX : X → (X → U) is an embedding.

With this we get an almost converse to the fact that truncated algebraic injectivity implies
injectivity – the universe levels are different in the converse:

Lemma 41. If a type D : U is U , U+-injective, then it is algebraically U , U+-injective in an
unspecified way.

So, in summary, regarding the relationship between injectivity and truncated algebraic injec-
tivity, so far we know that

if D is algebraically U , V-injective in an unspecified way, then it is U , V-injective,

and, not quite conversely,

if D is U , U+-injective, then it is algebraically U , U-injective in an unspecified way.

Therefore, using propositional resizing, we get the following characterization of a particular case
of injectivity in terms of algebraic injectivity.

Proposition 42 (Injectivity in terms of algebraic injectivity). If propositional resizing holds, then
a type D : U is U , U+-injective if and only if it is algebraically U , U+-injective in an unspecified way.

We would like to do better than this. For that purpose, we consider the partial-map classifier in
conjunction with flabbiness and resizing.

10. Algebraic Flabbiness via the Partial-Map Classifier
We begin with a generalization (Escardó and Knapp, 2017) of a familiar construction in 1-topos
theory (Kock, 1991).

Definition 43. The lifting LT X : T + � U of a type X : U with respect to a universe T is defined by

LT X def= �(P : T), (P → X)× P is a subsingleton.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

18 M.H. Escardó

When the universes T and U are the same and the last component of the triple is omitted, we
have the familiar canonical correspondence

(X → T)	 (�(P : T), P → X)

that maps A : X → T to P def= � A and the projection� A→ X. If the universe U is not necessarily
the same as T , then the equivalence becomes

(�(A : X → T � U),�(T : T), T 	 � A)	 (�(P : T), P → X).
This says that although the total space � A does not live in the universe T , it must have a copy
in T .

What the third component of the triple does is to restrict the above equivalences to the subtype
of those A whose total spaces � A are subsingletons. If we define the type of partial maps by

(X ⇀ Y) def= �(A : T), (A ↪→ X)× (A→ Y),
where A ↪→ X is the type of embeddings, then for any X, Y : T , we have an equivalence

(X ⇀ Y)	 (X →LT Y),
so that LT is the partial-map classifier for the universe T . When the universe U is not necessarily
the same as T , the lifting classifies partial maps in U whose embeddings have fibers with copies
in T .

This is a sort of an ∞-monad “across universes” (Escardó, 2019c), and modulo providing
coherence data, which we have not done at the time of writing, but which is not needed for our
purposes. We could call this a “wild monad,” but we will refer to it as simply a monad with this
warning.

In order to discuss the lifting in more detail, we first characterize its equality types. We denote
the projections from LT X by

δ(P, φ, i) def= P (domain of definition),

υ(P, φ, i) def= φ (value function),

σ (P, φ, i) def= i (subsingleton-hood of the domain of definition).

For l,m :LT X, define

(l�m) def= �(e : δ l	 δ m), υ l= υ m ◦ e,
as indicated in the commuting triangle

δl e � δm

X

vm

�

vl
�

Lemma 44. The canonical transformation (l=m)→ (l�m) that sends refll to the identity
equivalence paired with reflυ l is an equivalence.

The unit η : X →LT X is given by

ηX x= (1, (p �→ x), i)
where i is a proof that 1 is a proposition.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 19

Lemma 45. The unit ηX : X →LT X is an embedding.

Proof. This is easily proved using the above characterization of equality.

Lemma 46. The unit satisfies the unit equations for a monad.

Proof. Using the above characterization of equality, the left and right unit laws amount to the fact
that the type 1 is the left and right unit for the operation (−)× (−) on types.

Next, LT is functorial by mapping a function f : X → Y to the function LT f :LT X →LT Y
defined by

LT f (P, φ, i)= (P, f ◦ φ, i).
This commutes with identities and composition definitionally. We define the multiplication μX :
LT (LT X)→LT X by

δ(μ(P, φ, i)) def= �(p : P), δ(φ p),

υ(μ(P, φ, i)) def= (p, q) �→ υ(φ p) q,

σ (μ(P, φ, i)) def= because subsingletons are closed under sums.

Lemma 47. The multiplication satisfies the associativity equation for a monad.

Proof. Using the above characterization of equality, we see that this amounts to the associativity
of �, which says that for P : T , Q : X → T , R : � Q→ T we have (�(t : � Q), R t)	 (�(p : P)
�(q :Q p), R(p, q)).

The naturality conditions for the unit and multiplication are even easier to check, and we omit the
verification. We now turn to algebras. We omit the direct verification of the following.

Lemma 48. Let X : U be any type.

1. A function α :LT X → X, that is, a functor algebra, amounts to a family of functions
⊔

P :
(P → X)→ X with P : T ranging over subsingletons.
We will write

⊔
P φ as

⊔
p:P φ p.

2. The unit law for monad algebras amounts to, for any x : X,
⊔

p:1
x= x,

which is equivalent to, for all subsingletons P, functions φ : P → X and points p0 : P,
⊔

p:P
φ p= φ p0.

Therefore a functor algebra satisfying the unit law amounts to the same thing as algebraic
flabbiness data. In other words, the algebraically T -flabby types are the algebras of the pointed
functor (LT , η). In particular, monad algebras are algebraically flabby.

3. The associativity law for monad algebras amounts to, for any subsingleton P : T and family
Q : P → T of subsingletons, and any φ : � Q→ X,

⊔

t:�Q
φ t =

⊔

p:P

⊔

q:Q p
φ(p, q).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

20 M.H. Escardó

So the associativity law for algebras plays no role in flabbiness. But of course we can have algebraic
flabbiness data that is associative, such as not only the free algebra LT X but also the following two
examples that connect to the opening development of this paper on the injectivity of universes, in
particular the construction Lemma 10:

Lemma 49. The universe T is a monad algebra of LT in at least two ways, with
⊔ = � and⊔ = �.

We now apply these ideas to injectivity.

Lemma 50. Any algebraically T , T +-injective type D : T is a retract of LT D.

Proof. Because the unit is an embedding, and so we can extend the identity of D along it.

Theorem 51 (Second characterization of algebraic injectives).With propositional resizing, a type
D : T is algebraically T , T -injective if and only if it is a retract of a monad algebra of LT .

Proof. (⇒): Because D is algebraically T , T -injective, it is algebraically T , T +-injective by
resizing, and hence it is a retract of LT D. (⇐): Algebraic injectivity is closed under retracts.

Definition 52. Now, instead of propositional resizing, we consider the propositional impredicativity
of the universe U , which says that the type �U of propositions in U , which lives in the next universe
U+, has an equivalent copy in U . We refer to this kind of impredicativity as �-resizing.

It is not hard to see that propositional resizing implies �-resizing for all universes other than
the first one (Escardó, 2019c), and so all the assumption of �-resizing does is to account for the
first universe too.

Lemma 53. Under �-resizing, for any type X : T , the type LT X : T + has an equivalent copy in the
universe T .

Proof. We can take �(p : �′), pr1 (ρ p)→ X where ρ : �′ → �T is the given equivalence.

We apply this lifting machinery to get the following, which does not mention lifting in its
formulation.

Theorem 54 (Characterization of injectivity in terms of algebraic injectivity). In the presence
of �-resizing, the T , T -injectivity of a type D in a universe T is equivalent to the propositional
truncation of its algebraic T , T -injectivity.

Proof. We already know that the truncation of algebraic injectivity (trivially) gives injectivity. For
the other direction, let L be a resized copy of LT D in the universe T . Composing the unit with
the equivalence given by resizing, we get an embedding D→ L, because embeddings are closed
under composition and equivalences are embeddings. Hence D is a retract of L in an unspecified
way by the injectivity of D, by extending its identity. But L, being equivalent to a free algebra, is
algebraically injective, and hence D, being a retract of L, is algebraically injective in an unspecified
way, because retracts of algebraically injectives are algebraically injective, by the functoriality of
truncation on objects.

As an immediate consequence, by reduction to the above results about algebraic injectivity, we
have the following corollary.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 21

Theorem 55. Under �-resizing and propositional resizing, if a type D in a universe T is T , T -
injective , then it is also U , V-injective for any universes U and V .

Proof. The type D is algebraically T , T -injective in an unspecified way, and so by functoriality
of truncation on objects and algebraic injective resizing, it is algebraically U , V-injective in an
unspecified way, and hence it is U , V-injective.

At the time of writing, we are not able to establish the converse. In particular, we do not have
the analogue of Lemma 27.

11. The Equivalence of Excluded Middle with the (Algebraic) Injectivity of all Pointed
Types

Algebraic flabbiness can also be applied to show that all pointed types are (algebraically) injective
if and only if excluded middle holds, where for injectivity resizing is needed as an assumption, but
for algebraic injectivity it is not.

The decidability of a type X is defined to be the assertion X + (X → 0), which says that we can
exhibit a point of X or else tell that X is empty. The principle of excluded middle in univalent
mathematics, for the universe U , is taken to mean that all subsingleton types in U are decidable:

EMU
def= �(P : U), P is a subsingleton → P + (P → 0).

As discussed in the introduction, we are not assuming or rejecting this principle, which is inde-
pendent of the other axioms. Notice that, in the presence of function extensionality, this principle
is a subsingleton, because products of subsingletons are subsingletons and because P + (P → 0) is
a subsingleton for any subsingleton P. So in the following we get data out of a proposition.

Lemma 56. If excluded middle holds in the universe U , then every pointed type D in any universe
W is algebraically U-flabby.

Proof. Let d be the given point of D and f : P →D be a function with subsingleton domain. If we
have a point p : P, then we can take f p as the flabbiness witness. Otherwise, if P → 0, we can take
d as the flabbiness witness.

For the converse, we use the following.

Lemma 57. If the type P + (P → 0)+ 1 is algebraically W-flabby for a given subsingleton P in a
universeW , then P is decidable.

Proof. Denote by D the type P + (P → 0)+ 1 and let f : P + (P → 0)→D be the inclusion.
Because P + (P → 0) is a subsingleton, the algebraic flabbiness of D gives d :D with d = f z for
all z : P + (P → 0). Now, by definition of binary sum, d must be in one of the three components
of the sum that defines D. If it were in the third component, namely 1, then P could not hold,
because if it did we would have p : P and hence, omitting the inclusions into sums, and consider-
ing z = p, we would have d = f p= p, because f is the inclusion, which is not in the 1 component.
But also P → 0 could not hold, because if it did we would have φ : P → 0 and hence, again omit-
ting the inclusion, and considering z = φ, we would have d = f φ = φ, which again is not in the
1 component. But it is impossible for both P and P → 0 to fail, because this would mean that we
would have functions P → 0 (the failure of P) and (P → 0)→ 0 (the failure of P → 0), and so we
could apply the second function to the first to get a point of the empty type, which is not available.
Therefore d cannot be in the third component, and so it must be in the first or the second, which
means that P is decidable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

22 M.H. Escardó

From this we immediately conclude the following:

Lemma 58. If all pointed types in a universe W are algebraically W-flabby, then excluded middle
holds inW .

And then we have the same situation for algebraically injective types, by reduction to algebraic
flabbiness:

Lemma 59. If excluded middle holds in the universe U � V , then any pointed type D in any universe
W is algebraically U , V-injective.

Putting this together with some universe specializations, we have the following construction.

Theorem 60. All pointed types in a universe U are algebraically U , U-injective if and only if
excluded middle holds in U .

And we have a similar situation with injective types.

Lemma 61. If excluded middle holds, then every inhabited type of any universe is injective with
respect to any two universes.

Proof. Because excluded middle gives algebraic injectivity, which in turn gives injectivity.

Without resizing, we have the following.

Lemma 62. If every inhabited type D :W is W ,W+-injective, then excluded middle holds in the
universeW .

Proof. Given a proposition P, we have that the type D def= P + (P → 0)+ 1W is injective by the
assumption. Hence it is algebraically injective in an unspecified way by Proposition 42. And so it
is algebraically flabby in an unspecified way. By the lemma, P is decidable in an unspecified way,
but then it is decidable because the decidability of a proposition is a proposition.

With resizing we can do better:

Lemma 63. Under �-resizing, if every inhabited type in a universe U is U , U-injective, then
excluded middle holds in U .

Proof. Given a proposition P, we have that the type D def= P + (P → 0)+ 1U is injective by the
assumption. Hence it is injective in an unspecified way by Theorem 54. And so it is algebraically
flabby in an unspecified way. By the lemma, P is decidable in an unspecified way, and hence
decidable.

Theorem 64. Under �-resizing, all inhabited types in a universe U are U , U-injective if and only if
excluded middles holds in U .

It would be interesting to get rid of the resizing assumption, which, as we have seen, is not needed
for the equivalence of the algebraic injectivity of all pointed types with excluded middle.

Acknowledgements. Mike Shulman has acted as a sounding board over the years, with many helpful remarks, including in
particular the suggestion of the terminology algebraic injectivity from Bourke (2017) for the notion we consider here.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

Mathematical Structures in Computer Science 23

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0960129520000225.

References
Blechschmidt, I. (2018). Flabby and injective objects in toposes. arXiv e-prints, arXiv:1810.12708, October 2018.
Bourke, J. (2017). Equipping weak equivalences with algebraic structure. arXiv e-prints, arXiv:1712.02523, December 2017.
Escardó, M. H. (2019a). Injective types in univalent mathematics. https://github.com/martinescardo/TypeTopology/blob/

master/source/InjectiveTypes-article.lagda, February 2019. Agda development.
Escardó, M. H. (2019b) Injective types in univalent mathematics (blackboard version). https://github.com/martinescardo/

TypeTopology/blob/master/source/InjectiveTypes.lagda, February 2019. Agda development.
Escardó, M. H. (2019c). Various new theorems in constructive univalent mathematics written in Agda. https://github.com/

martinescardo/TypeTopology/, February 2019. Agda development.
Escardó, M. H. and Knapp, C. M. (2017). Partial elements and recursion via dominances in univalent type theory. In:

Computer Science Logic 2017, LIPIcs. Leibniz International Proceedings in Informatics, vol. 82, Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, Art. No. 21, 16.

Kenney, T. (2011). Injective power objects and the axiom of choice. Journal of Pure and Applied Algebra 215 (2) 131–144.
Kock, A. (1991). Algebras for the partial map classifier monad. In: Category Theory (Como, 1990), Lecture Notes in

Mathematics, vol. 1488, Berlin, Springer, 262–278.
Rijke, E. (2012). Homotopy type theory. Master’s thesis, Utrecht University. https://homotopytypetheory.org/2012/08/18/

a-master-thesis-on-homotopy-type-theory/.
Shulman, M. (2015). Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures in Computer

Science 25 (5) 1203–1277.
Shulman, M. (2016). Idempotents in intensional type theory. Logical Methods in Computer Science 12 (3), Paper No. 10, 24.
Shulman, M. (2019). All (∞, 1)-toposes have strict univalent universes. arXiv e-prints, arXiv:1904.07004, April 2019.
The Agda Community. Agda wiki. https://wiki.portal.chalmers.se/agda/pmwiki.php.
The Coq Development Team. The Coq proof assistant. https://coq.inria.fr/.
The Univalent Foundations Program. (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. https://

homotopytypetheory.org/book, Institute for Advanced Study.
Voevodsky, V. (2015). An experimental library of formalized mathematics based on the univalent foundations. Mathematical

Structures in Computer Science 25 (5) 1278–1294.

Cite this article: EscardóMH (2020). Injective types in univalent mathematics.Mathematical Structures in Computer Science.
https://doi.org/10.1017/S0960129520000225

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129520000225
Downloaded from https://www.cambridge.org/core. IP address: 2.26.129.236, on 24 Mar 2021 at 15:41:48, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0960129520000225
https://doi.org/10.1017/S0960129520000225
https://arXiv.org/abs/1810.12708
https://arXiv.org/abs/1712.02523
https://github.com/martinescardo/TypeTopology/blob/master/source/InjectiveTypes-article.lagda
https://github.com/martinescardo/TypeTopology/blob/master/source/InjectiveTypes-article.lagda
https://github.com/martinescardo/TypeTopology/blob/master/source/InjectiveTypes.lagda
https://github.com/martinescardo/TypeTopology/blob/master/source/InjectiveTypes.lagda
https://github.com/martinescardo/TypeTopology/
https://github.com/martinescardo/TypeTopology/
https://homotopytypetheory.org/2012/08/18/a-master-thesis-on-homotopy-type-theory/
https://homotopytypetheory.org/2012/08/18/a-master-thesis-on-homotopy-type-theory/
https://arXiv.org/abs/1904.07004
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr/
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129520000225
https://www.cambridge.org/core

	Injective types in univalent mathematics
	Introduction
	Underlying Formal System
	Our univalent type theory
	Terminology and notation
	Formal development

	Injectivity with Universe Levels
	The Algebraic Injectivity of Universes
	Constructions with Algebraically Injective Types
	Algebraic Flabbiness and Resizing Constructions
	Injectivity of Subuniverses
	Algebraic Flabbiness with Resizing Axioms
	Injectivity in Terms of Algebraic Injectivity in the Absence of Resizing
	Algebraic Flabbiness via the Partial-Map Classifier
	The Equivalence of Excluded Middle with the (Algebraic) Injectivity of all Pointed Types

