104 research outputs found

    The Possibility of a Non-Lagrangian Theory of Gravity

    Full text link
    General Relativity resembles a very elegant crystal glass: If we touch its principles, that is, its Lagrangian, there is a risk of breaking everything. Or, if we will, it is like a short blanket: Curing some problems creates new problems. This paper is devoted to bring to light the reasons why we pursue the possibility of a non-Lagrangian theory of gravity under the hypothesis of an extension of the original general relativity with an ansatz inspired in the fundamental principles of classical and quantum physics.Comment: 6 pages, 1 figure. Version accepted in Universe MDP

    Nonparametric reconstruction of the Om diagnostic to test LCDM

    Full text link
    Cosmic acceleration is usually related with the unknown dark energy, which equation of state, w(z), is constrained and numerically confronted with independent astrophysical data. In order to make a diagnostic of w(z), the introduction of a null test of dark energy can be done using a diagnostic function of redshift, Om. In this work we present a nonparametric reconstruction of this diagnostic using the so-called Loess-Simex factory to test the concordance model with the advantage that this approach offers an alternative way to relax the use of priors and find a possible 'w' that reliably describe the data with no previous knowledge of a cosmological model. Our results demonstrate that the method applied to the dynamical Om diagnostic finds a preference for a dark energy model with equation of state w =-2/3, which correspond to a static domain wall network.Comment: 10 pages, 5 figures, 2 table

    DBI Galileon inflation in the light of Planck 2015

    Full text link
    In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor (f)\left(f\right) and the induced gravity parameter (m~)\left(\tilde{m}\right). We study the parameter space of the model and find that the tensor-to-scalar ratio can be as low as r≃6×10−4r\simeq6\times10^{-4} and inflation happens to be at GUT scale. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation (r=−8nt)\left(r=-8n_{t}\right) against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.Comment: Version accepted in JCAP. 25 pages, 10 figures, new refs adde

    Exploring bulk viscous unified scenarios with gravitational waves standard sirens

    Get PDF
    We consider the unified bulk viscous scenarios and constrain them using the Cosmic Microwave Background observations from Planck 2018 and the Pantheon sample from Type Ia supernovae. Then we generate the luminosity distance measurements from O(103) mock Gravitational Wave Standard Sirens (GWSS) events for the proposed Einstein Telescope. We then combine these mock luminosity distance measurements from the GWSS with the current cosmological probes in order to forecast how the mock GWSS data could be effective in constraining these bulk viscous scenarios. Our results show that a non-zero time dependent bulk viscosity in the universe sector is strongly preferred by the current cosmological probes and will possibly be confirmed at many standard deviations by the future GWSS measurements. We further mention that the addition of GWSS data can significantly reduce the uncertainties of the key cosmological parameters obtained from the usual cosmological probes employed in this work

    Unified description of the dynamics of quintessential scalar fields

    Full text link
    Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines which give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.Comment: Minor changes to the text and two new figures, main conclusions unchanged. 12 pages, 11 figures, uses RevTe

    Non-minimally Coupled Cosmological Models with the Higgs-like Potentials and Negative Cosmological Constant

    Full text link
    We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.Comment: 22 pages, 6 figures, v4:Section 2 expanded, references added, accepted for publication in Class. Quant. Gra

    Tension between SN and BAO: current status and future forecasts

    Full text link
    Using real and synthetic Type Ia SNe (SNeIa) and baryon acoustic oscillations (BAO) data representing current observations forecasts, this paper investigates the tension between those probes in the dark energy equation of state (EoS) reconstruction considering the well known CPL model and Wang's low correlation reformulation. In particular, here we present simulations of BAO data from both the the radial and transverse directions. We also explore the influence of priors on Omega_m and Omega_b on the tension issue, by considering 1-sigma deviations in either one or both of them. Our results indicate that for some priors there is no tension between a single dataset (either SNeIa or BAO) and their combination (SNeIa+BAO). Our criterion to discern the existence of tension (sigma-distance) is also useful to establish which is the dataset with most constraining power; in this respect SNeIa and BAO data switch roles when current and future data are considered, as forecasts predict and spectacular quality improvement on BAO data. We also find that the results on the tension are blind to the way the CPL model is addressed: there is a perfect match between the original formulation and that by the low correlation optimized, but the errors on the parameters are much narrower in all cases of our exhaustive exploration, thus serving the purpose of stressing the convenience of this reparametrization.Comment: 21 pages, under review in JCA

    Possible dark energy imprints in gravitational wave spectrum of mixed neutron-dark-energy stars

    Full text link
    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.Comment: 17 pages, 8 figures, LaTe
    • …
    corecore