137 research outputs found

    表紙・目次

    Get PDF
    Adeno-associated virus (AAV) is a small single-stranded DNA virus that requires the presence of a helper virus, such as adenovirus or herpes virus, to efficiently replicate its genome. AAV DNA is replicated by a rolling-hairpin mechanism (Ward, 2006), and during replication several DNA intermediates can be detected. This detailed protocol describes how to analyze the AAV DNA intermediates formed during AAV replication using a modified Hirt extract (Hirt, 1967) procedure and Southern blotting (Southern, 1975)

    Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE(-/-) mice

    Get PDF
    The PLPP3 gene encodes for a ubiquitous enzyme that dephosphorylates several lipid substrates. Genome-wide association studies identified PLPP3 as a gene that plays a role in coronary artery disease susceptibility. The aim of the study was to investigate the effect of Plpp3 deletion on atherosclerosis development in mice. Because the constitutive deletion of Plpp3 in mice is lethal, conditional Plpp3 hepatocyte-specific null mice were generated by crossing floxed Plpp3 mice with animals expressing Cre recombinase under control of the albumin promoter. The mice were crossed onto the athero-prone apoE(-/-) background to obtain Plpp3(f/f)apoE(-/-) Alb-Cre(+) and Plpp3(f/f)apoE(-/-) Alb-Cre(-) offspring, the latter of which were used as controls. The mice were fed chow or a Western diet for 32 or 12 weeks, respectively. On the Western diet, Alb-Cre+ mice developed more atherosclerosis than Alb-Cre- mice, both at the aortic sinus and aorta. Lipidomic analysis showed that hepatic Plpp3 deletion significantly modified the levels of several plasma lipids involved in atherosclerosis, including lactosylceramides, lysophosphatidic acids, and lysophosphatidylinositols. In conclusion, Plpp3 ablation in mice worsened atherosclerosis development. Lipidomic analysis suggested that the hepatic Plpp3 deletion may promote atherosclerosis by increasing plasma levels of several low-abundant pro-atherogenic lipids, thus providing a molecular basis for the observed results

    DNA Structure Modulates the Oligomerization Properties of the AAV Initiator Protein Rep68

    Get PDF
    Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA+ motor domain. The AAA+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration

    Functional Analysis of a Dominant Negative Mutation of Interferon Regulatory Factor 5

    Get PDF
    BACKGROUND: Interferon regulatory factor (IRF) family members have been implicated as critical transcription factors that function in immune response, hematopoietic differentiation and cell growth regulation. Activation of IRF-5 results in the production of pro-inflammatory cytokines such as TNFalpha, IL6 and IL12p40, as well as type I interferons. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we identify a G202C (position relative to translation start codon) missense-mutation transcript of IRF-5 in transformed B and T cell lines, which were either infected or non-infected by viruses, and peripheral blood from ATL or CLL patients. The mutated transcript encodes a novel protein in which the sixty-eighth amino acid, Alanine, is substituted by Proline (IRF-5P68) in the DNA binding domain of IRF-5. IRF-5P68 phenotype results in a complete loss of its DNA-binding activity and functions as a dominant negative molecule through interacting with wild type IRF-5. Co-expression of IRF-5P68 inhibits MyD88-mediated IRF-5 transactivation. Moreover, Toll-like receptor (TLR)-dependent IL6 and IL12P40 production induced by lipopolysaccharide (LPS), R837 or CpG ODN 1826 was reduced in IRF-5 (P68) expressing cells as compared to the control cells. CONCLUSION: IRF-5P68 acts as a dominant negative regulator that interferes with IRF-5-mediated production of pro-inflammatory cytokines. The functional characterization of the novel IRF-5 mutant in transformed B and T cell lines and in ATL and CLL patients may lead to a better understanding of the role of these transcriptional regulators in hematopoietic malignancies

    Challenges in Estimating Insecticide Selection Pressures from Mosquito Field Data

    Get PDF
    Insecticide resistance has the potential to compromise the enormous effort put into the control of dengue and malaria vector populations. It is therefore important to quantify the amount of selection acting on resistance alleles, their contributions to fitness in heterozygotes (dominance) and their initial frequencies, as a means to predict the rate of spread of resistance in natural populations. We investigate practical problems of obtaining such estimates, with particular emphasis on Mexican populations of the dengue vector Aedes aegypti. Selection and dominance coefficients can be estimated by fitting genetic models to field data using maximum likelihood (ML) methodology. This methodology, although widely used, makes many assumptions so we investigated how well such models perform when data are sparse or when spatial and temporal heterogeneity occur. As expected, ML methodologies reliably estimated selection and dominance coefficients under idealised conditions but it was difficult to recover the true values when datasets were sparse during the time that resistance alleles increased in frequency, or when spatial and temporal heterogeneity occurred. We analysed published data on pyrethroid resistance in Mexico that consists of the frequency of a Ile1,016 mutation. The estimates for selection coefficient and initial allele frequency on the field dataset were in the expected range, dominance coefficient points to incomplete dominance as observed in the laboratory, although these estimates are accompanied by strong caveats about possible impact of spatial and temporal heterogeneity in selection

    Modeling Transmission Dynamics and Control of Vector-Borne Neglected Tropical Diseases

    Get PDF
    Neglected tropical diseases affect more than one billion people worldwide. The populations most impacted by such diseases are typically the most resource-limited. Mathematical modeling of disease transmission and cost-effectiveness analyses can play a central role in maximizing the utility of limited resources for neglected tropical diseases. We review the contributions that mathematical modeling has made to optimizing intervention strategies of vector-borne neglected diseases. We propose directions forward in the modeling of these diseases, including integrating new knowledge of vector and pathogen ecology, incorporating evolutionary responses to interventions, and expanding the scope of sensitivity analysis in order to achieve robust results

    Modulations of the Chicken Cecal Microbiome and Metagenome in Response to Anticoccidial and Growth Promoter Treatment

    Get PDF
    With increasing pressures to reduce or eliminate the use of antimicrobials for growth promotion purposes in production animals, there is a growing need to better understand the effects elicited by these agents in order to identify alternative approaches that might be used to maintain animal health. Antibiotic usage at subtherapeutic levels is postulated to confer a number of modulations in the microbes within the gut that ultimately result in growth promotion and reduced occurrence of disease. This study examined the effects of the coccidiostat monensin and the growth promoters virginiamycin and tylosin on the broiler chicken cecal microbiome and metagenome. Using a longitudinal design, cecal contents of commercial chickens were extracted and examined using 16S rRNA and total DNA shotgun metagenomic pyrosequencing. A number of genus-level enrichments and depletions were observed in response to monensin alone, or monensin in combination with virginiamycin or tylosin. Of note, monensin effects included depletions of Roseburia, Lactobacillus and Enterococcus, and enrichments in Coprococcus and Anaerofilum. The most notable effect observed in the monensin/virginiamycin and monensin/tylosin treatments, but not in the monensin-alone treatments, was enrichments in Escherichia coli. Analysis of the metagenomic dataset identified enrichments in transport system genes, type I fimbrial genes, and type IV conjugative secretion system genes. No significant differences were observed with regard to antimicrobial resistance gene counts. Overall, this study provides a more comprehensive glimpse of the chicken cecum microbial community, the modulations of this community in response to growth promoters, and targets for future efforts to mimic these effects using alternative approaches
    corecore