13 research outputs found

    Evolution of low-mass metal-free stars including effects of diffusion and external pollution

    Full text link
    We investigate the evolution of low-mass metal-free Population III stars. Emphasis is laid upon the question of internal and external sources for CNO-elements, which - if present in sufficient amounts in the hydrogen-burning regions - lead to a strong modification of the stars' evolutionary behavior. For the production of carbon due to nuclear processes inside the stars, we use an extended nuclear network, demonstrating that hot pp-chains do not suffice to produce enough carbon or are less effective than the triple3-alpha-process. As an external source of CNO-elements we test the efficiency of pollution by a nearby massive star combined with particle diffusion. For all cases investigated, the additional metals fail to reach nuclear burning regions before deep convection on the Red Giant Branch obliterates the previous evolution. The surface abundance history of the polluted Pop III stars is presented. The possibilities to discriminate between a Pop II and a polluted Pop III field star are also discussed.Comment: Accepted for publication in Ap

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure

    Full text link
    The evolution of rotating stars with zero-age main sequence (ZAMS) masses in the range 8 to 25 M_sun is followed through all stages of stable evolution. The initial angular momentum is chosen such that the star's equatorial rotational velocity on the ZAMS ranges from zero to ~ 70 % of break-up. Redistribution of angular momentum and chemical species are then followed as a consequence of rotationally induced circulation and instablities. The effects of the centrifugal force on the stellar structure are included. Uncertain mixing efficiencies are gauged by observations. We find, as noted in previous work, that rotation increases the helium core masses and enriches the stellar envelopes with products of hydrogen burning. We determine, for the first time, the angular momentum distribution in typical presupernova stars along with their detailed chemical structure. Angular momentum loss due to (non-magnetic) stellar winds and the redistribution of angular momentum during core hydrogen burning are of crucial importance for the specific angular momentum of the core. Neglecting magnetic fields, we find angular momentum transport from the core to the envelope to be unimportant after core helium burning. We obtain specific angular momenta for the iron core and overlaying material of 1E16...1E17 erg s. These values are insensitive to the initial angular momentum. They are small enough to avoid triaxial deformations of the iron core before it collapses, but could lead to neutron stars which rotate close to break-up. They are also in the range required for the collapsar model of gamma-ray bursts. The apparent discrepancy with the measured rotation rates of young pulsars is discussed.Comment: 62 pages, including 7 tables and 19 figures. Accepted by Ap

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    EVOLUTIONARY STATUS OF THE PRIMARY COMPONENT OF YZ-CASSIOPEIAE

    No full text

    THE EVOLUTION OF A 20M(CIRCLE-DOT) ROTATING STAR - ABUNDANCE ANOMALIES IN OBN STARS IN THE LMC

    No full text
    Evolutionary study of a rotating 20M. star with a chemical composition appropriate for the Large Magellanic Cloud (LMC) has been carried out starting from the threshold of stability through the gravitational contraction phase, approach to the main-sequence, on the hydrogen burning phase, upto the point at which 61% of hydrogen was consumed in the central region of the star. During evolution mixing due to diffusion has been taken into account. As a consequence of such a mixing it has been shown that the atmosphere of the star was enriched the most conspicuously in helium and nitrogen. Thus it was concluded that rotational mixing helps the star to expose processed matter at its surface. When compared with the observations of nitrogen rich early type stars, our results agree well with the observed chemical composition of the OBN stars, if not quantitatively but at least qualitatively
    corecore