72 research outputs found

    A Fast-CSMA Algorithm for Deadline-Constrained Scheduling over Wireless Fading Channels

    Full text link
    Recently, low-complexity and distributed Carrier Sense Multiple Access (CSMA)-based scheduling algorithms have attracted extensive interest due to their throughput-optimal characteristics in general network topologies. However, these algorithms are not well-suited for serving real-time traffic under time-varying channel conditions for two reasons: (1) the mixing time of the underlying CSMA Markov Chain grows with the size of the network, which, for large networks, generates unacceptable delay for deadline-constrained traffic; (2) since the dynamic CSMA parameters are influenced by the arrival and channel state processes, the underlying CSMA Markov Chain may not converge to a steady-state under strict deadline constraints and fading channel conditions. In this paper, we attack the problem of distributed scheduling for serving real-time traffic over time-varying channels. Specifically, we consider fully-connected topologies with independently fading channels (which can model cellular networks) in which flows with short-term deadline constraints and long-term drop rate requirements are served. To that end, we first characterize the maximal set of satisfiable arrival processes for this system and, then, propose a Fast-CSMA (FCSMA) policy that is shown to be optimal in supporting any real-time traffic that is within the maximal satisfiable set. These theoretical results are further validated through simulations to demonstrate the relative efficiency of the FCSMA policy compared to some of the existing CSMA-based algorithms.Comment: This work appears in workshop on Resource Allocation and Cooperation in Wireless Networks (RAWNET), Princeton, NJ, May, 201

    Proactive Resource Allocation: Harnessing the Diversity and Multicast Gains

    Full text link
    This paper introduces the novel concept of proactive resource allocation through which the predictability of user behavior is exploited to balance the wireless traffic over time, and hence, significantly reduce the bandwidth required to achieve a given blocking/outage probability. We start with a simple model in which the smart wireless devices are assumed to predict the arrival of new requests and submit them to the network T time slots in advance. Using tools from large deviation theory, we quantify the resulting prediction diversity gain} to establish that the decay rate of the outage event probabilities increases with the prediction duration T. This model is then generalized to incorporate the effect of the randomness in the prediction look-ahead time T. Remarkably, we also show that, in the cognitive networking scenario, the appropriate use of proactive resource allocation by the primary users improves the diversity gain of the secondary network at no cost in the primary network diversity. We also shed lights on multicasting with predictable demands and show that the proactive multicast networks can achieve a significantly higher diversity gain that scales super-linearly with T. Finally, we conclude by a discussion of the new research questions posed under the umbrella of the proposed proactive (non-causal) wireless networking framework

    On Resource Allocation in Fading Multiple Access Channels - An Efficient Approximate Projection Approach

    Full text link
    We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates on the information theoretic capacity region of the multiple-access channel. Our policies does not require queue-length information. We consider several different scenarios. First, we address the utility maximization problem in a nonfading channel to obtain the optimal operating rates, and present an iterative gradient projection algorithm that uses approximate projection. By exploiting the polymatroid structure of the capacity region, we show that the approximate projection can be implemented in time polynomial in the number of users. Second, we consider resource allocation in a fading channel. Optimal rate and power allocation policies are presented for the case that power control is possible and channel statistics are available. For the case that transmission power is fixed and channel statistics are unknown, we propose a greedy rate allocation policy and provide bounds on the performance difference of this policy and the optimal policy in terms of channel variations and structure of the utility function. We present numerical results that demonstrate superior convergence rate performance for the greedy policy compared to queue-length based policies. In order to reduce the computational complexity of the greedy policy, we present approximate rate allocation policies which track the greedy policy within a certain neighborhood that is characterized in terms of the speed of fading.Comment: 32 pages, Submitted to IEEE Trans. on Information Theor

    ‘Codes are not enough…’: a report of ongoing research

    Get PDF
    We consider the problem of rate allocation in a fading Gaussian multiple-access channel (MAC) with fixed transmission powers. Our goal is to maximize a general concave utility function of transmission rates over the throughput capacity region. In contrast to earlier works in this context that propose solutions where a potentially complex optimization problem must be solved in every decision instant, we propose a low-complexity approximate rate allocation policy and analyze the effect of temporal channel variations on its utility performance. To the best of our knowledge, this is the first work that studies the tracking capabilities of an approximate rate allocation scheme under fading channel conditions. We build on an earlier work to present a new rate allocation policy for a fading MAC that implements a low-complexity approximate gradient projection iteration for each channel measurement, and explicitly characterize the effect of the speed of temporal channel variations on the tracking neighborhood of our policy. We further improve our results by proposing an alternative rate allocation policy for which tighter bounds on the size of the tracking neighborhood are derived. These proposed rate allocation policies are computationally efficient in our setting since they implement a single gradient projection iteration per channel measurement and each such iteration relies on approximate projections which has polynomial-complexity in the number of users.Comment: 9 pages, In proc. of ITA 200

    Scheduling with Rate Adaptation under Incomplete Knowledge of Channel/Estimator Statistics

    Full text link
    In time-varying wireless networks, the states of the communication channels are subject to random variations, and hence need to be estimated for efficient rate adaptation and scheduling. The estimation mechanism possesses inaccuracies that need to be tackled in a probabilistic framework. In this work, we study scheduling with rate adaptation in single-hop queueing networks under two levels of channel uncertainty: when the channel estimates are inaccurate but complete knowledge of the channel/estimator joint statistics is available at the scheduler; and when the knowledge of the joint statistics is incomplete. In the former case, we characterize the network stability region and show that a maximum-weight type scheduling policy is throughput-optimal. In the latter case, we propose a joint channel statistics learning - scheduling policy. With an associated trade-off in average packet delay and convergence time, the proposed policy has a stability region arbitrarily close to the stability region of the network under full knowledge of channel/estimator joint statistics.Comment: 48th Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sept. 201
    corecore