367 research outputs found

    Characterizing Galaxy Clusters with Gravitational Potential

    Full text link
    We propose a simple estimator for the gravitational potential of cluster-size halos using the temperature and density profiles of the intracluster gas based on the assumptions of hydrostatic equilibrium and spherical symmetry. Using high resolution cosmological simulations of galaxy clusters, we show that the scaling relation between this estimator and the gravitational potential has a small intrinsic scatter of ~8%-15%, and it is insensitive to baryon physics outside the cluster core. The slope and the normalization of the scaling relation vary weakly with redshift, and they are relatively independent of the choice of radial range used and the dynamical states of the clusters. The results presented here provide a possible way for using the cluster potential function as an alternative to the cluster mass function in constraining cosmology using galaxy clusters.Comment: 10 pages, 7 figures, 4 tables. Matching the version accepted for publication in the Astrophysical Journa

    Multi-scale analysis of turbulence evolution in the density stratified intracluster medium

    Full text link
    The diffuse hot medium inside clusters of galaxies typically exhibits turbulent motions whose amplitude increases with radius, as revealed by cosmological hydrodynamical simulations. However, its physical origin remains unclear. It could either be due to an excess injection of turbulence at large radii, or faster turbulence dissipation at small radii. We investigate this by studying the time evolution of turbulence in the intracluster medium (ICM) after major mergers, using the Omega500 non-radiative hydrodynamical cosmological simulations. By applying a novel wavelet analysis to study the radial dependence of the ICM turbulence spectrum, we discover that faster turbulence dissipation in the inner high density regions leads to the increasing turbulence amplitude with radius. We also find that the ICM turbulence at all radii decays in two phases after a major merger: an early fast decay phase followed by a slow secular decay phase. The buoyancy effects resulting from the ICM density stratification becomes increasingly important during turbulence decay, as revealed by a decreasing turbulence Froude number Fr∼O(1)Fr \sim \mathcal{O}(1). Our results indicate that the stronger density stratification and smaller eddy turn-over time are the likely causes of the faster turbulence dissipation rate in the inner regions of the cluster.Comment: 8 pages, 7 figures, accepted to MNRA

    Analytical model for non-thermal pressure in galaxy clusters - III. Removing the hydrostatic mass bias

    Full text link
    Non-thermal pressure in galaxy clusters leads to underestimation of the mass of galaxy clusters based on hydrostatic equilibrium with thermal gas pressure. This occurs even for dynamically relaxed clusters that are used for calibrating the mass-observable scaling relations. We show that the analytical model for non-thermal pressure developed in Shi & Komatsu 2014 can correct for this so-called 'hydrostatic mass bias', if most of the non-thermal pressure comes from bulk and turbulent motions of gas in the intracluster medium. Our correction works for the sample average irrespective of the mass estimation method, or the dynamical state of the clusters. This makes it possible to correct for the bias in the hydrostatic mass estimates from X-ray surface brightness and the Sunyaev-Zel'dovich observations that will be available for clusters in a wide range of redshifts and dynamical states.Comment: 9 pages, 8 figures, published in MNRA
    • …
    corecore