203 research outputs found

    A model study of momentum-selective Mott physics

    Get PDF
    The Fermi liquid theory is a central concept in modern condensed matter physics used to describe conventional metals. A state of this universality class consists of well-defined quasiparticles, which occupy a finite number of states within a Fermi volume defined in momentum space. According to the Luttinger’s theorem, such a state encloses a Fermi volume proportional to the electron density modulo the filled bands if no symmetry is broken. In the past decades strong deviations from Fermi liquid theory have been observed in the scaling behavior of thermodynamic observables in different materials, among which are for instance cuprates and iron pnictides. This thesis is about two prototypical systems that can not be described by Fermi liquid theory. The first part of this work investigates two-dimensional effective models, which are in a Mott insulating state at half-filling and have a finite conductivity when doped with holes. In such a Mott insulating state, the charge carriers are strongly localized due to the Coulomb repulsion. Hence, strong correlations are assumed to have a strong impact on the formation of the ground state, also in the regime of small hole concentration. In a first project we have used a so-called spinon dopon mean-field theory to represent the two-dimensional Fermi-Hubbard model with strong on-site repulsive interaction in effective degrees of freedom, in which the holes can be embedded into a quantum spin liquid. The corresponding SU(2) invariant ground state belongs to the class of fractionalized Fermi liquids. In a second project we investigate a quantum dimer model, an effective model based on a Hilbert space spanned by short range singlets and bound states of holes and spins. The focus here is on the calculation of the hole-part of the electron spectral function by using exact diagonalization and its comparison with two analytic methods, a diagrammatic computation based on the Bethe-Salpeter equation and a so-called two-mode approximation. The electron spectral function shows a similar analytic form in momentum space between nodal and antinodal point when compared to results from photoemission spectroscopy experiments on cuprates. Furthermore, in a subsequent work we calculate the exact ground state of the quantum dimer model along a certain parameter line. In order to analyze the behavior of the elctron spectral function when increasing the density of holes, we investigate the Fermi-Hubbard model in a current project using a dynamical mean-field approach. To solve the 4-site cluster impurity problem, we use a numerical renormalization group approach. However, numerical limitations force us to restrict the analysis to spin-polarized baths. According to the spectral data, the system is similar to the SU(2) invariant case at half-filling in a Mott insulating state and posseses a momentum-selective energy gap at finite doping. The topology of the Fermi surface shows a Lifshitz transition when increasing the hole concentration. Here, the curvature of the Fermi surface changes from electron- to hole-like. For comparison we apply the dynamical mean-field theory also to the quantum dimer model and observe that the electron spectral functions at finite doping are qualitatively similar to that of the two-dimensional Fermi-Hubbard model. The second half of the work is about Tomonaga-Luttinger liquid theory, which is used to describe the low-energy effective degrees of freedom of one-dimensional systems. Here, we first discuss a conceptional extension of the operator-based bosonization theory for one-dimensional systems. This extension is especially suited for inhomogeneous one-dimensional systems. First, we investigate a one-dimensional system with a local interation potential and compute an exact solution of the single particle propagator at T = 0. The critical exponent of the single particle propagator has an unconventional form as a function of the microscopic Tomonaga-Luttinger parameters, which is not covered by the original Luttinger paradigm postulated by F. Duncan M. Haldane. In a second project on one-dimensional systems, we study the impact of scattering processes among bosonic low-energy excitations on the thermalization process. Such scattering processes are irrelevant on large length scales, however strongly affect the dynamics. In our analytic analysis we focus on a experimental setup, where a one-dimensional Bose gas is instantaneously splitted in two identical, however strongly correlated, halves of one-dimensional electronic systems. In the following, the corresponding non-equilibrium state runs through multiple regimes in time, such as a metastable prethermalization regime. However, above a certain threshold in time such scattering processes cause an effective thermalization of the system. In order to demonstrate this, we compute the kinetic equation in the Keldysh field integral formalism from a diagrammatic expansion based on a self-consistent Born approximation

    A model study of momentum-selective Mott physics

    Get PDF
    The Fermi liquid theory is a central concept in modern condensed matter physics used to describe conventional metals. A state of this universality class consists of well-defined quasiparticles, which occupy a finite number of states within a Fermi volume defined in momentum space. According to the Luttinger’s theorem, such a state encloses a Fermi volume proportional to the electron density modulo the filled bands if no symmetry is broken. In the past decades strong deviations from Fermi liquid theory have been observed in the scaling behavior of thermodynamic observables in different materials, among which are for instance cuprates and iron pnictides. This thesis is about two prototypical systems that can not be described by Fermi liquid theory. The first part of this work investigates two-dimensional effective models, which are in a Mott insulating state at half-filling and have a finite conductivity when doped with holes. In such a Mott insulating state, the charge carriers are strongly localized due to the Coulomb repulsion. Hence, strong correlations are assumed to have a strong impact on the formation of the ground state, also in the regime of small hole concentration. In a first project we have used a so-called spinon dopon mean-field theory to represent the two-dimensional Fermi-Hubbard model with strong on-site repulsive interaction in effective degrees of freedom, in which the holes can be embedded into a quantum spin liquid. The corresponding SU(2) invariant ground state belongs to the class of fractionalized Fermi liquids. In a second project we investigate a quantum dimer model, an effective model based on a Hilbert space spanned by short range singlets and bound states of holes and spins. The focus here is on the calculation of the hole-part of the electron spectral function by using exact diagonalization and its comparison with two analytic methods, a diagrammatic computation based on the Bethe-Salpeter equation and a so-called two-mode approximation. The electron spectral function shows a similar analytic form in momentum space between nodal and antinodal point when compared to results from photoemission spectroscopy experiments on cuprates. Furthermore, in a subsequent work we calculate the exact ground state of the quantum dimer model along a certain parameter line. In order to analyze the behavior of the elctron spectral function when increasing the density of holes, we investigate the Fermi-Hubbard model in a current project using a dynamical mean-field approach. To solve the 4-site cluster impurity problem, we use a numerical renormalization group approach. However, numerical limitations force us to restrict the analysis to spin-polarized baths. According to the spectral data, the system is similar to the SU(2) invariant case at half-filling in a Mott insulating state and posseses a momentum-selective energy gap at finite doping. The topology of the Fermi surface shows a Lifshitz transition when increasing the hole concentration. Here, the curvature of the Fermi surface changes from electron- to hole-like. For comparison we apply the dynamical mean-field theory also to the quantum dimer model and observe that the electron spectral functions at finite doping are qualitatively similar to that of the two-dimensional Fermi-Hubbard model. The second half of the work is about Tomonaga-Luttinger liquid theory, which is used to describe the low-energy effective degrees of freedom of one-dimensional systems. Here, we first discuss a conceptional extension of the operator-based bosonization theory for one-dimensional systems. This extension is especially suited for inhomogeneous one-dimensional systems. First, we investigate a one-dimensional system with a local interation potential and compute an exact solution of the single particle propagator at T = 0. The critical exponent of the single particle propagator has an unconventional form as a function of the microscopic Tomonaga-Luttinger parameters, which is not covered by the original Luttinger paradigm postulated by F. Duncan M. Haldane. In a second project on one-dimensional systems, we study the impact of scattering processes among bosonic low-energy excitations on the thermalization process. Such scattering processes are irrelevant on large length scales, however strongly affect the dynamics. In our analytic analysis we focus on a experimental setup, where a one-dimensional Bose gas is instantaneously splitted in two identical, however strongly correlated, halves of one-dimensional electronic systems. In the following, the corresponding non-equilibrium state runs through multiple regimes in time, such as a metastable prethermalization regime. However, above a certain threshold in time such scattering processes cause an effective thermalization of the system. In order to demonstrate this, we compute the kinetic equation in the Keldysh field integral formalism from a diagrammatic expansion based on a self-consistent Born approximation

    IuK-Standort Bayern - Erfolgsfaktoren im internationalen Wettbewerb

    Get PDF

    Berufliche Bildung aus wirtschaftspolitischer Sicht

    Get PDF
    Ausgehend von der aktuellen Diskussion über Bildung und der Forderung nach Verbesserung der Bildungsangebote spricht sich der Autor Erwin Huber (derzeit Bayerischer Staatsminister für Wirtschaft, Infrastruktur, Verkehr und Technologie) für eine Optimierung von Bildungsstrukturen und -methoden aus. Im Zusammenhang mit der beruflichen Bildung zeigt er Lösungsansätze auf und regt zu weiteren Diskussionen an. Die duale Berufsausbildung sieht er als "Erfolgsmodell". Angesichts der Auswirkungen der Globalisierung und Internationalisierung betont er die Bedeutung von Aus- und Weiterbildung als "lebenslanges Lernen". Schließlich listet er Beispiele und Projekte der Bayrischen Staatsregierung zur Förderung der beruflichen Bildung auf

    Reform des Länderfinanzausgleichs?

    Get PDF
    Bayern und Baden-Württemberg haben für den Fall, daß unter den Bundesländern bis Juli dieses Jahres keine Einigung über eine Reform des Länderfinanzausgleichs erzielt wird, eine Klage vor dem Bundesverfassungsgericht angekündigt. Auf welchen Argumenten basiert die Forderung nach einer Reform des Länderfinanzausgleichs? Wie könnte sie aussehen? --

    Jobs fĂĽr Deutschland

    Get PDF
    Abschluss der ifo Jahresversammlung 2006 war eine hochrangig besetzten Podiumsdiskussion zum Thema "Jobs für Deutschland". Diskussionsteilnehmer waren - neben Minister Huber und Prof. Sinn - Prof. Michael Burda, Ph.D., Humboldt-Universität zu Berlin, Prof. Dr. Ingolf Deubel, Staatsminister der Finanzen des Landes Rheinland-Pfalz, Prof. Dr. Dr. h.c. mult. Wolfgang Franz, Europäisches Zentrum für Wirtschaftsforschung, Mannheim, und Prof. Dr. Georg Milbradt, Ministerpräsident des Freistaates Sachsen. Moderiert wurde die Diskussion von Nikolaus Piper von der Süddeutschen Zeitung.Beschäftigungspolitik, Arbeitsnachfrage, Arbeitslosigkeit, Arbeitsangebot, Globalisierung, Deutschland

    Reform der Agenda 2010: Notwendige Korrekturen oder RĂĽckschritt?

    Get PDF
    Einführung von Mindestlöhnen, Reform bei der Arbeitslosenversicherung: Hat die Bundesregierung in diesem Sommer eine reformpolitische Wende vollzogen, oder sind dies notwendige Korrekturen bei der Fortsetzung der Agenda-Politik? Für Erwin Huber, Vorsitzender der CSU und bayerischer Finanzminister, hat die Reformagenda 2010, einen Beitrag zum gegenwärtigen Aufschwung geleistet, aber sie war »Stückwerk«, da sie sich auf den Arbeitsmarkt konzentrierte. Deshalb sei es entscheidend, sie durch weitere Reformschritte auf anderen Gebieten fortzuführen. Kein gutes Zeichen sei, dass sich die SPD mittlerweile von der Schröderschen Reformagenda mehr und mehr distanziere. Auch Michael Hüther, Institut der deutschen Wirtschaft Köln, befürchtet, dass die Bundesregierung in diesem Sommer eine reformpolitische Wende eingeläutet hat, anstatt die Reformagenda konsequent weiterzuentwickeln. So ignoriere die Politik, vor allem mit dem Vorhaben der Einführung von flächendeckenden branchenbezogenen Mindestlöhnen und der Verlängerung der Bezugsdauer des Arbeitslosengelds I für ältere Arbeitnehmer, völlig die empirisch belegten Zusammenhänge. Klaus Brandner, Bundesministerium für Arbeit und Soziales, unterstreicht, dass die Agenda-Politik wirke und mehr Menschen in Arbeit bringe. Die Korrekturen seien notwendig gewesen und im Einklang mit den Zielen der Reformpolitik, möglichst alle Menschen an der wirtschaftlichen Entwicklung teilhaben zu lassen sowie ihnen zu ermöglichen, eine Beschäftigung zu finden, und zwar »eine gute Arbeit«, die fair und angemessen bezahlt und rechtlich abgesichert ist.Mindestlohn, Arbeitslosenversicherung, Reform, Wirtschaftspolitik, Sozialpolitik, Finanzpolitik, Arbeitsmarkt, Arbeitslosigkeit, Deutschland
    • …
    corecore