59 research outputs found

    An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.

    Get PDF
    We often interact with our environment through manual handling of objects and exploration of their properties. Object properties (OP), such as texture, stiffness, size, shape, temperature, weight, and orientation provide necessary information to successfully perform interactions. The human haptic perception system plays a key role in this. As virtual reality (VR) has been a growing field of interest with many applications, adding haptic feedback to virtual experiences is another step towards more realistic virtual interactions. However, integrating haptics in a realistic manner, requires complex technological solutions and actual user-testing in virtual environments (VEs) for verification. This review provides a comprehensive overview of recent wearable haptic devices (HDs) categorized by the OP exploration for which they have been verified in a VE. We found 13 studies which specifically addressed user-testing of wearable HDs in healthy subjects. We map and discuss the different technological solutions for different OP exploration which are useful for the design of future haptic object interactions in VR, and provide future recommendations

    (HIIT-The Track) High-Intensity Interval Training for People with Parkinson's Disease: Individual Response Patterns of (Non-)Motor Symptoms and Blood-Based Biomarkers-A Crossover Single-Case Experimental Design.

    Get PDF
    INTRODUCTION Physical exercise is receiving increasing interest as an augmentative non-pharmacological intervention in Parkinson's disease (PD). This pilot study primarily aimed to quantify individual response patterns of motor symptoms to alternating exercise modalities, along with non-motor functioning and blood biomarkers of neuroplasticity and neurodegeneration. MATERIALS & METHODS People with PD performed high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) using a crossover single-case experimental design. A repeated assessment of outcome measures was conducted. The trajectories of outcome measures were visualized in time series plots and interpreted relative to the minimal clinically important difference (MCID) and smallest detectable change (SDC) or as a change in the positive or negative direction using trend lines. RESULTS Data of three participants were analyzed and engaging in physical exercise seemed beneficial for reducing motor symptoms. Participant 1 demonstrated improvement in motor function, independent of exercise modality; while for participant 2, such a clinically relevant (positive) change in motor function was only observed in response to CAE. Participant 3 showed improved motor function after HIIT, but no comparison could be made with CAE because of drop-out. Heterogeneous responses on secondary outcome measures were found, not only between exercise modalities but also among participants. CONCLUSION Though this study underpins the positive impact of physical exercise in the management of PD, large variability in individual response patterns to the interventions among participants makes it difficult to identify clear exercise-induced adaptations in functioning and blood biomarkers. Further research is needed to overcome methodological challenges in measuring individual response patterns

    Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: The next step

    Get PDF
    Introduction: Predicting upper limb capacity recovery is important to set treatment goals, select therapies and plan discharge. We introduce a prediction model of the patient-specific profile of upper limb capacity recovery up to 6 months poststroke by incorporating all serially assessed clinical information from patients. Methods: Model input was recovery profile of 450 patients with a first-ever ischaemic hemispheric stroke measured using the Action Research Arm Test (ARAT). Subjects received at least three assessment sessions, starting within the first week until 6 months poststroke. We developed mixed-effects models that are able to deal with one or multiple measurements per subject, measured at non-fixed time points. The prediction accuracy of the different models was established by a fivefold cross-validation procedure. Results: A model with only ARAT time course, finger extension and shoulder abduction performed as good as models with more covariates. For the final model, cross-validation prediction errors at 6 months poststroke decreased as the number of measurements per subject increased, from a median error of 8.4 points on the ARAT (Q1-Q3:1.7-28.1) when one measurement early poststroke was used, to 2.3 (Q1-Q3:1-7.2) for seven measurements. An online version of the recovery model was developed that can be linked to data acquisition environments. Conclusio

    Early prediction of outcome of activities of daily living after stroke: a systematic review

    Get PDF
    Background and Purpose-Knowledge about robust and unbiased factors that predict outcome of activities of daily living (ADL) is paramount in stroke management. This review investigates the methodological quality of prognostic studies in the early poststroke phase for final ADL to identify variables that are predictive or not predictive for outcome of ADL after stroke. Methods-PubMed, Ebsco/Cinahl and Embase were systematically searched for prognostic studies in which stroke patients were included = 3 months poststroke. Risk of bias scores were used to distinguish high-and low-quality studies and a qualitative synthesis was performed. Results-Forty-eight of 8425 identified citations were included. The median risk of bias score was 17 out of 27 (range, 6-22) points. Most studies failed to report medical treatment applied, management of missing data, rationale for candidate determinants and outcome cut-offs, results of univariable analysis, and validation and performance of the model, making the predictive value of most determinants indistinct. Six high-quality studies showed strong evidence for baseline neurological status, upper limb paresis, and age as predictors for outcome of ADL. Gender and risk factors such as atrial fibrillation were unrelated to this outcome. Conclusions-Because of insufficient methodological quality of most prognostic studies, the predictive value of many clinical determinants for outcome of ADL remains unclear. Future cohort studies should focus on early prediction using simple models with good clinical performance to enhance application in stroke management and research. (Stroke. 2011;42:1482-1488.

    Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    Get PDF
    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    Effects and Mechanisms of Exercise on Brain-Derived Neurotrophic Factor (BDNF) Levels and Clinical Outcomes in People with Parkinson's Disease: A Systematic Review and Meta-Analysis.

    Get PDF
    INTRODUCTION Exercise therapy may increase brain-derived neurotrophic factor (BDNF) levels and improve clinical outcomes in people living with Parkinson's disease (PD). This systematic review was performed to investigate the effect of exercise therapy on BDNF levels and clinical outcomes in human PD and to discuss mechanisms proposed by authors. METHOD A search on the literature was performed on PubMed up to December 2023 using the following key words: Parkinson's disease AND exercise, exercise therapy, neurological rehabilitation AND brain-derived neurotrophic factor, brain-derived neurotrophic factor/blood, brain-derived neurotrophic factor/cerebrospinal fluid AND randomized clinical trial, intervention study. Only randomized clinical trials comparing an exercise intervention to treatment as usual, usual care (UC), sham intervention, or no intervention were included. RESULTS A meta-analysis of BDNF outcomes with pooled data from five trials (N = 216 participants) resulted in a significant standardized mean difference (SMD) of 1.20 [95% CI 0.53 to 1.87; Z = 3.52, p = 0.0004, I2 = 77%], favoring exercise using motorized treadmill, Speedflex machine, rowing machine, and non-specified exercise. Significant improvements were found in Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS-III, 6 Minute Walk Test (6MWT), and Berg Balance Scale (BBS). Methodological quality of trials was categorized as "good" in three trials, "fair" in one trial, and "poor" in one trial. CONCLUSION Key results of this systematic review are that exercise therapy is effective in raising serum BDNF levels and seems effective in alleviating PD motor symptoms. Exercise therapy confers neuroplastic effects on Parkinson brain, mediated, in part, by BDNF

    An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration

    No full text
    We often interact with our environment through manual handling of objects and exploration of their properties. Object properties (OP), such as texture, stiffness, size, shape, temperature, weight, and orientation provide necessary information to successfully perform interactions. The human haptic perception system plays a key role in this. As virtual reality (VR) has been a growing field of interest with many applications, adding haptic feedback to virtual experiences is another step towards more realistic virtual interactions. However, integrating haptics in a realistic manner, requires complex technological solutions and actual user-testing in virtual environments (VEs) for verification. This review provides a comprehensive overview of recent wearable haptic devices (HDs) categorized by the OP exploration for which they have been verified in a VE. We found 13 studies which specifically addressed user-testing of wearable HDs in healthy subjects. We map and discuss the different technological solutions for different OP exploration which are useful for the design of future haptic object interactions in VR, and provide future recommendations
    corecore