27 research outputs found

    Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway.

    Get PDF
    HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+)

    A Helix Replacement Mechanism Directs Metavinculin Functions

    Get PDF
    Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated ΔLeu954 metavinculin deletion mutant. These structures reveal that an α-helix (H1′) and extended coil of the metavinculin insert replace α-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated ΔLeu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1′ α-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions

    Crystal structure of Escherichia coli crotonobetainyl-CoA: Carnitine CoA-transferase (CaiB) and its complexes with CoA and carnitinyl-CoA

    No full text
    L-Carnitine (R-[-]-3-hydroxy-4-trimethylaminobutyrate) is found in both eukaryotic and prokaryotic cells and participates in diverse processes including long-chain fatty-acid transport and osmoprotection. The enzyme crotonobetainyl/gamma-butyrobetainyl-CoA:carnitine CoA-transferase (CaiB; E.C. 2.8.3.-) catalyzes the first step in carnitine metabolism, leading to the final product gamma-butyrobetaine. The crystal structures of Escherichia coli apo -CaiB, as well as its Asp169Ala mutant bound to CoA and to carnitinyl-CoA, have been determined and refined to 1.6, 2.4, and 2.4 angstrom resolution, respectively. CaiB is composed of two identical circular chains that together form an intertwined dimer. Each monomer consists of a large domain, containing a Rossmann fold, and a small domain. The monomer and dimer resemble those of formyl-CoA transferase from Oxalobacter formigenes, as well as E. coli YfdW, a putative type-III CoA transferase of unknown function. The CoA cofactor-binding site is formed at the interface of the large domain of one monomer and the small domain from the second monomer. Most of the protein-CoA interactions are formed with the Rossmann fold domain. While the location of cofactor binding is similar in the three proteins, the specific CoA-protein interactions vary somewhat between CaiB, formyl-CoA transferase, and YfdW. CoA binding results in a change in the relative positions of the large and small domains compared with apo-CaiB. The observed carnitinyl-CoA product in crystals of the CaiB Asp169Ala mutant cocrystallized with crotonoyl-CoA and carnitine could result from (i) a catalytic mechanism involving a ternary enzyme-substrate complex, independent of a covalent anhydride intermediate with Asp169, (ii) a spontaneous reaction of the substrates in solution, followed by binding to the enzyme, or (iii) an involvement of another residue substituting functionally for Asp169, such as Glu23NRC publication: Ye

    Structural snapshots of Escherichia coli Histidinol phosphate phosphatase along the reaction pathway

    No full text
    HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+)NRC publication: Ye

    Structure of [NiFe] Hydrogenase Maturation Protein HypE from Escherichia coli and Its Interaction with HypF▿

    No full text
    Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-Å resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of ∼400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction

    Structural snapshots of Escherichia coli Histidinol phosphate phosphatase along the reaction pathway

    Get PDF
    HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+)NRC publication: Ye
    corecore