3 research outputs found

    Investigation of base excision repair gene variants in late-onset Alzheimer's disease.

    No full text
    Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk

    Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth

    No full text
    Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3’-[(1,1’-Biphenyl)-4’,4’-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers’ therapy

    Parents of ataxia-telangiectasia patients display a distinct cellular immune phenotype mimickingATM-mutated patients

    No full text
    Background Heterozygous relatives of ataxia-telangiectasia (AT) patients are at an increased risk for certain AT-related manifestations. We also show that there is an increase of infection frequency in parents of AT patients. Thus, we hypothesized that the parents might exhibit immune alterations similar to their affected children. Methods Lymphocyte phenotyping to enumerate T- and B-cell subsets was performed. Functional analyses included in vitro quantified gamma-H2AX, poly (ADP-ribose) polymerase (PARP) and caspase-9 proteins. Chromosomal instability was determined by comet assay. Results We analyzed 20 AT patients (14F/6M), 31 parents (16F/15M), and 35 age-matched healthy controls. The AT patients' parents exhibited low frequency of naive CD4(+)T- (n = 14, 45%) and recent thymic emigrants (n = 11, 35%) in comparison with the age-matched healthy donors. Interestingly, parents with low naive T cells also demonstrated high rate of recurrent infections (9/14, 64%). In comparison with age-matched controls, parents who had recurrent infections and low naive T cells showed significantly higher baseline gamma-H2AX levels and H2O2-induced DNA damage as well as increased cleaved caspase-9 and PARP proteins. Conclusion Parents of AT patients could present with recurrent infections and display cellular defects that mimic AT patients. The observed immunological changes could be associated with increased DNA double-strand breaks
    corecore